R/AllUtilities.R

Defines functions .alleleCount .testDosageData .testSeqVarData .testData .subsetByUniqueOverlaps .subjectByQuery .countGenotypes .permuteGenotypes .nHomAlt .nHetRef .nHomRef .isTransversion .isTransition .parseVariableLength .maxAlleleLength .parseAltAllele .parseRefAllele .applyNames .emptyGenoMatrix .emptyDim .emptyVarFilter .emptySampFilter .nSampObserved .nVarUnfiltered .nSampUnfiltered .nVar .nSamp .ploidy .rangesToSel .rangesToID .applyMethod

.applyMethod <- function(gdsobj, FUN, variant.id=NULL, sample.id=NULL, ...) {
  seqSetFilter(gdsobj, sample.id=sample.id, variant.id=variant.id, action="push+set")
  result <- FUN(gdsobj, ...)
  seqSetFilter(gdsobj, action="pop", verbose=FALSE)
  result
}

.rangesToID <- function(gdsobj, ranges) {
  gds.ranges <- granges(gdsobj, id=seqGetData(gdsobj, "variant.id"))
  mcols(subsetByOverlaps(gds.ranges, ranges))$id
}

.rangesToSel <- function(gdsobj, ranges) {
  gds.ranges <- granges(gdsobj)
  # don't warn if no sequence levels in common
  queryHits(suppressWarnings(findOverlaps(gds.ranges, ranges)))
}

.ploidy <- function(gdsobj) {
  seqSummary(gdsobj, "genotype", check="none", verbose=FALSE)$dim[1L]
}

.nSamp <- function(gdsobj) {
  #sum(seqGetFilter(gdsobj)$sample.sel)
  seqSummary(gdsobj, "genotype", check="none", verbose=FALSE)$seldim[2L]
}

.nVar <- function(gdsobj) {
  #sum(seqGetFilter(gdsobj)$variant.sel)
  seqSummary(gdsobj, "genotype", check="none", verbose=FALSE)$seldim[3L]
}

.nSampUnfiltered <- function(gdsobj) {
  seqSummary(gdsobj, "sample.id", check="none", verbose=FALSE)
}

.nVarUnfiltered <- function(gdsobj) {
  seqSummary(gdsobj, "variant.id", check="none", verbose=FALSE)
}

.nSampObserved <- function(gdsobj) {
  ns <- .nSamp(gdsobj)
  if (ns > 0) {
      return(as.integer(round(ns * (1-seqMissing(gdsobj)))))
  } else {
      return(rep(0L, .nVar(gdsobj)))
  }
}

.emptySampFilter <- function(x, verbose=FALSE) {
    seqSetFilter(x, sample.sel=raw(.nSampUnfiltered(x)), action="push+set", verbose=verbose)
}

.emptyVarFilter <- function(x, verbose=FALSE) {
    seqSetFilter(x, variant.sel=raw(.nVarUnfiltered(x)), action="push+set", verbose=verbose)
}

.emptyDim <- function(x) {
    .nSamp(x) == 0 | .nVar(x) == 0
}

.emptyGenoMatrix <- function(x, use.names=FALSE) {
    m <- matrix(nrow=.nSamp(x), ncol=.nVar(x),
                dimnames=list(sample=NULL, variant=NULL))
    if (use.names) .applyNames(x, m) else m
}

.applyNames <- function(gdsobj, var) {
  if ("sample" %in% names(dimnames(var)))
    dimnames(var)$sample <- seqGetData(gdsobj, "sample.id")
  if ("variant" %in% names(dimnames(var)))
    dimnames(var)$variant <- seqGetData(gdsobj, "variant.id")
  var
}

.parseRefAllele <- function(x) {
  endRef <- regexpr(",", x, fixed=TRUE) - 1L
  noAlt <- endRef < 0L
  if (any(noAlt))
      endRef[noAlt] <- nchar(x[noAlt])
  substr(x, 1L, endRef)
}

.parseAltAllele <- function(x, n=0) {
  if (n == 0) {
    ## if n=0, return string with all ALT alleles
    begAlt <- regexpr(",", x, fixed=TRUE) + 1L
    noAlt <- begAlt == 0L
    if (any(noAlt))
        begAlt[noAlt] <- nchar(x[noAlt]) + 1L
    substr(x, begAlt, nchar(x))
  } else {
    ## if n>0, return nth ALT allele
    unlist(lapply(strsplit(x, ",", fixed=TRUE), function(x) x[n+1]),
           use.names=FALSE)
  }
}

## .parseNumAlleles <- function(x) {
##   #unlist(lapply(strsplit(x, ",", fixed=TRUE), length), use.names=FALSE)
##   str_count(x, ",") + 1L
## }

.maxAlleleLength <- function(x) {
  a <- gregexpr("[ACGT]+", x)
  unlist(lapply(a, function(y) max(attr(y, "match.length"))), use.names=FALSE)
}

.parseVariableLength <- function(x) {
  if (all(x$length == 1)) {
    x$data
  } else {
    var <- array(dim=c(max(x$length), nrow(x$data), length(x$length)))

    ## assign each element of length to an index of first array dimension
    n.ind <- rep(NA, ncol(x$data))
    j <- 1
    for (i in 1:length(x$length)) {
      len <- x$length[i]
      if (len > 0) {
        n.ind[j:(j + len - 1)] <- 1:len
        j <- j + len
      }
    }

    ## for each index of first array dimension, get values
    for (n in 1:dim(var)[1]) {
      var.ind <- which(x$length >= n)
      var[n,,var.ind] <- x$data[,n.ind == n]
    }

    ## if first array dimension is 1, simplify to a matrix
    if (dim(var)[1] == 1) {
      var <- var[1,,]
    }
    var
  }
}

.isTransition <- function(ref, alt) {
  (ref %in% c("C","T") & alt %in% c("C","T")) |
  (ref %in% c("A","G") & alt %in% c("A","G"))
}

.isTransversion <- function(ref, alt) {
  (ref %in% c("C","T") & alt %in% c("A","G")) |
  (ref %in% c("A","G") & alt %in% c("C","T"))
}

## number of homozygote reference genotypes
.nHomRef <- function(x) {
    sum(x[1,] == 0 & x[2,] == 0, na.rm=TRUE)
}

## number of heterozyotes with one reference allele
.nHetRef <- function(x) {
    sum((x[1,] == 0 & x[2,] != 0) |
        (x[1,] != 0 & x[2,] == 0), na.rm=TRUE)
}

## number of genotypes with no reference alleles
.nHomAlt <- function(x) {
    sum(x[1,] != 0 & x[2,] != 0, na.rm=TRUE)
}

.permuteGenotypes <- function(x) {
    ## get subset of matrix with no missing values
    ind <- colSums(is.na(x)) == 0
    nm <- x[,ind,drop=FALSE]
    ## permute alleles
    nm <- matrix(sample(nm), nrow=nrow(nm), ncol=ncol(nm))
    ## replace non-missing genotypes
    x[,ind] <- nm
    x
}

.countGenotypes <- function(gdsobj, permute=FALSE, parallel=FALSE) {
    n <- seqApply(gdsobj, "genotype", function(x) {
        if (permute) x <- .permuteGenotypes(x)
        c(nAA=.nHomRef(x), nAa=.nHetRef(x), naa=.nHomAlt(x))
    }, margin="by.variant", as.is="list", parallel=parallel)
    as.data.frame(do.call(rbind, n))
}

.subjectByQuery <- function(query, subject, hits.only=FALSE) {
    ol <- findOverlaps(query, subject)
    if (hits.only) {
        hits <- unique(queryHits(ol))
    } else {
        hits <- seq_along(query)
    }
    subj.hits <- lapply(hits, function(h) {
        subjectHits(ol)[queryHits(ol) == h]
    })
    list(queryHits=hits, subjectHits=subj.hits)
}

# behaves like subsetByOverlaps, except removes query ranges that have
# duplicate sets of overlapping subject ranges
.subsetByUniqueOverlaps <- function(query, subject) {
    # look for any subject ranges that have identical query ranges
    # we want to eliminate these
    sbq <- .subjectByQuery(query, subject, hits.only=TRUE)
    query[sbq$queryHits[!duplicated(sbq$subjectHits)]]
}

.testData <- function() {
    gdsfmt::showfile.gds(closeall=TRUE, verbose=FALSE)
    gdsfile <- seqExampleFileName("gds")
    seqOpen(gdsfile)
}

.testSeqVarData <- function() {
    SeqVarData(.testData())
}

.testDosageData <- function() {
    gdsfmt::showfile.gds(closeall=TRUE, verbose=FALSE)
    gdsfile <- system.file("extdata", "gl_chr1.gds", package="SeqVarTools")
    seqOpen(gdsfile)
}

.alleleCount <- function(gdsobj, n=0) {
    freq <- seqAlleleFreq(gdsobj, ref.allele=n)
    nsamp <- .nSamp(gdsobj)*(1-seqMissing(gdsobj))
    2*freq*nsamp
}

Try the SeqVarTools package in your browser

Any scripts or data that you put into this service are public.

SeqVarTools documentation built on Nov. 22, 2020, 2 a.m.