Description Usage Arguments Value Examples
head, tail
: Retrieve the first / last n rows of
the SQLDataFrame
object. See ?S4Vectors::head
for
more details.
dim, dimnames, length, names
: Retrieve the
dimension, dimension names, number of columns and colnames of
SQLDataFrame object.
[i, j]
supports subsetting by i
(for
row) and j
(for column) and respects ‘drop=FALSE’.
Use select()
function to select certain
columns.
Use filter()
to choose rows/cases where
conditions are true.
mutate()
adds new columns and preserves
existing ones; It also preserves the number of rows of the
input. New variables overwrite existing variables of the same
name.
connSQLDataFrame
returns the connection of a
SQLDataFrame object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ## S4 method for signature 'SQLDataFrame'
head(x, n = 6L)
## S4 method for signature 'SQLDataFrame'
tail(x, n = 6L)
## S4 method for signature 'SQLDataFrame'
dim(x)
## S4 method for signature 'SQLDataFrame'
dimnames(x)
## S4 method for signature 'SQLDataFrame'
length(x)
## S4 method for signature 'SQLDataFrame'
names(x)
## S4 method for signature 'SQLDataFrame,ANY'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'SQLDataFrame,SQLDataFrame'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'SQLDataFrame,list'
x[i, j, ..., drop = TRUE]
## S4 method for signature 'SQLDataFrame'
x[[i, j, ...]]
## S4 method for signature 'SQLDataFrame'
x$name
## S3 method for class 'SQLDataFrame'
select(.data, ...)
## S3 method for class 'SQLDataFrame'
filter(.data, ...)
## S3 method for class 'SQLDataFrame'
mutate(.data, ...)
connSQLDataFrame(x)
|
x |
An |
n |
Number of rows. |
i |
Row subscript. Could be numeric / character / logical
values, a named list of key values, and |
j |
Column subscript. |
... |
additional arguments to be passed.
|
drop |
Whether to drop with reduced dimension. Default is TRUE. |
name |
column name to be extracted by |
.data |
A |
head, tail
: An SQLDataFrame
object with
certain rows.
dim
: interger vector
dimnames
: A list of character vectors.
length
: An integer
names
: A character vector
[i, j]
: A SQLDataFrame
object or vector with
realized column values (with single column subsetting and
default drop=TRUE
. )
select
: always returns a SQLDataFrame object no
matter how may columns are selected. If only key column(s)
is(are) selected, it will return a SQLDataFrame
object
with 0 col (only key columns are shown).
filter
: A SQLDataFrame
object with subset
rows of the input SQLDataFrame object matching conditions.
mutate
: A SQLDataFrame object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | ##################
## basic methods
##################
test.db <- system.file("extdata/test.db", package = "SQLDataFrame")
conn <- DBI::dbConnect(DBI::dbDriver("SQLite"), dbname = test.db)
obj <- SQLDataFrame(conn = conn, dbtable = "state", dbkey = "state")
dim(obj)
dimnames(obj)
length(obj)
names(obj)
obj1 <- SQLDataFrame(conn = conn, dbtable = "state",
dbkey = c("region", "population"))
###############
## subsetting
###############
obj[1]
obj["region"]
obj$region
obj[]
obj[,]
obj[NULL, ]
obj[, NULL]
## by numeric / logical / character vectors
obj[1:5, 2:3]
obj[c(TRUE, FALSE), c(TRUE, FALSE)]
obj[c("Alabama", "South Dakota"), ]
obj1[c("South:3615.0", "West:3559.0"), ]
### Remeber to add `.0` trailing for numeric values. If not sure,
### check `ROWNAMES()`.
## by SQLDataFrame
obj_sub <- obj[sample(10), ]
obj[obj_sub, ]
## by a named list of key column values (or equivalently data.frame /
## tibble)
obj[data.frame(state = c("Colorado", "Arizona")), ]
obj[tibble::tibble(state = c("Colorado", "Arizona")), ]
obj[list(state = c("Colorado", "Arizona")), ]
obj1[list(region = c("South", "West"),
population = c("3615.0", "365.0")), ]
### remember to add the '.0' trailing for numeric values. If not sure,
### check `ROWNAMES()`.
## Subsetting with key columns
obj["state"] ## list style subsetting, return a SQLDataFrame object with col = 0.
obj[c("state", "division")] ## list style subsetting, return a SQLDataFrame object with col = 1.
obj[, "state"] ## realize specific key column value.
obj[, c("state", "division")] ## col = 1, but do not realize.
###################
## select, filter, mutate
###################
library(dplyr)
obj %>% select(division) ## equivalent to obj["division"], or obj[, "division", drop = FALSE]
obj %>% select(region:size)
obj %>% filter(region == "West" & size == "medium")
obj1 %>% filter(region == "West" & population > 10000)
obj %>% mutate(p1 = population / 10)
obj %>% mutate(s1 = size)
obj %>% select(region, size, population) %>%
filter(population > 10000) %>%
mutate(pK = population/1000)
obj1 %>% select(region, size, population) %>%
filter(population > 10000) %>%
mutate(pK = population/1000)
###################
## connection info
###################
connSQLDataFrame(obj)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.