Nothing
compute_null_model <- function(cov_matrices,
number_of_datasets = 1e5,
number_of_samples){
#to reach the necessary number of datasets we need to find out how many
#datasets to construct from each covariance matrix we have
number_of_datasets_per_matrix <- ceiling(number_of_datasets /
length(cov_matrices))
precomputed_cov_matrices <- cov_matrices
mscor <- sample(
unlist(sample_zero_mscor_data(
cov_matrices = precomputed_cov_matrices,
number_of_datasets = number_of_datasets_per_matrix,
number_of_samples = number_of_samples)),
number_of_datasets)
test_data_dt <- data.table(mscor)
setkey(test_data_dt, mscor)
return(test_data_dt)
}
compute_p_values <- function(partition,
null_model,
number_of_datasets){
if(!("mscor" %in% colnames(partition)))
stop("sensitivity correlation missing")
#check which k and m
k <- as.character(partition[1,cor_cut])
m <- as.character(partition[1,df_cut])
logdebug(paste0("Computing p-values for partition m = ", m, " and k = ", k))
#simulate data using the appropriate covariance matrices
logdebug(paste0("Using simulation data provided for partition m = ", m,
" and k = ", k))
test_data_dt <- as.data.table(null_model)
if(is.null(test_data_dt)){
logdebug(paste0("No covariance matrix found for partition m = ", m,
" and k = ", k))
partition$p.val <- NA
partition$p.adj <- NA
partition <- as.data.table(partition)
}
else{
logdebug(paste0("Extracting p-values for partition m = ", m,
" and k = ", k,
"using simulated data from null model."))
number.of.datasets.on.right.side <- length(test_data_dt$mscor)
partition$p.val <- (number.of.datasets.on.right.side -
test_data_dt[J(partition$mscor),
.I,
roll = "nearest",
by = .EACHI]$I) /
number.of.datasets.on.right.side
partition <- as.data.table(partition)
partition[p.val == 0, p.val := (1/number_of_datasets)]
partition[, p.adj := p.adjust(p.val, method = "BH")]
}
return(partition)
}
#given that we can not compute null models for every parameter combination of
#gene-gene correlation k and number of miRNAs m, we need to assign each ceRNA
#interaction in sponge_result to its closest matching null models. we thus
#need a series of ks and ms and assign each ceRNA interaction to its closest
#matching null model.
determine_cutoffs_for_null_model_partitioning <- function(sponge_result,
ks,
m_max) {
if(any(!c("df", "cor") %in% colnames(sponge_result)))
stop("parameter sponge_result is missing expected columns cor and df")
if(!is.numeric(sponge_result$df)) stop("column df is not numeric")
if(!is.numeric(sponge_result$cor)) stop("column df is not numeric")
if(any(ks <= 0) | any(ks >= 1)) stop("elements in ks outside 0 < k < 1")
if(m_max < 1) stop("m_max has to be >= 1")
sponge_result <- as.data.table(sponge_result)
ms <- seq_len(m_max)
#set breaks right into the middle of two elements and add 0 and 1 at the
#boundaries
cor_breaks <- c(0, ks[-length(ks)] + ((ks[-1] - ks[-length(ks)]) / 2), 1)
#set partition for m > m_max to m_max and m otherwise
if(max(sponge_result$df) > (m_max - 1)){
df_breaks <- c(seq(0,(m_max -1 )), max(sponge_result$df))
} else{
df_breaks <- seq(0, max(sponge_result$df))
}
sponge_result <- sponge_result[,
c("cor_cut", "df_cut") := list(
cut(abs(cor),
breaks = cor_breaks),
cut(df, breaks = df_breaks))]
levels(sponge_result$cor_cut) <- ks
levels(sponge_result$df_cut) <- ms
setkey(sponge_result, cor_cut, df_cut)
return(sponge_result)
}
#function for iterating through partitions
isplitDT2 <- function(x, ks, ms, null_model) {
ival <- iter(apply(expand.grid(ks, ms), 1, list))
nextEl <- function() {
val <- nextElem(ival)
k <- val[[1]][1]
m <- val[[1]][2]
sim_data <- null_model[[as.character(m)]][[
as.character(k)]]
if(is.null(sim_data))
stop(paste0("simulation data missing for partition k = ", k,
" and m = ", m))
value <- x[.(as.character(k),
as.character(m))]
if(nrow(value) == 1) if(is.na(value$geneA)) value <- NULL
list(value = value,
key = val[[1]],
sim.data = sim_data
)
}
obj <- list(nextElem=nextEl)
class(obj) <- c('abstractiter', 'iter')
obj
}
#function for merging data tables efficiently
dtcomb <- function(...) {
rbindlist(list(...))
}
#' Compute p-values for SPONGE interactions
#'
#' @param sponge_result A data frame from a sponge call
#' @param null_model optional, pre-computed simulated data
#' @param log.level The log level of the logging package
#' @importFrom data.table data.table as.data.table
#' @import foreach
#' @import logging
#' @import iterators
#' @importFrom data.table data.table setkey
#' @seealso sponge_build_null_model
#'
#' @return A data frame with sponge results, now including p-values
#' and adjusted p-value
#' @description This method uses pre-computed covariance matrices that were
#' created for various gene-gene correlations (0.2 to 0.9 in steps of 0.1)
#' and number of miRNAs (between 1 and 8) under the null hypothesis that the
#' sensitivity correlation is zero. Datasets are sampled from this null model
#' and allow for an empirical p-value to be computed that is only significant
#' if the sensitivity correlation is higher than can be expected by chance
#' given the number of samples, correlation and number of miRNAs. p-values
#' are adjusted indepdenently for each parameter
#' combination using Benjamini-Hochberg FDR correction.
#' @export
#'
#' @examples sponge_compute_p_values(ceRNA_interactions,
#' null_model = precomputed_null_model)
sponge_compute_p_values <- function(sponge_result,
null_model,
log.level = "ERROR"){
if(length(null_model) == 0) stop("null model seems to be empty")
ks <- names(null_model[[1]])
ms <- names(null_model)
basicConfig(level = log.level)
loginfo("Computing empirical p-values for SPONGE results.")
sponge_result <-
determine_cutoffs_for_null_model_partitioning(
sponge_result,
ks = as.numeric(as.character(ks)),
m_max = max(as.integer(as.character(ms))))
number_of_datasets <- nrow(null_model[[1]][[1]])
result <- foreach(dt.m=isplitDT2(sponge_result, ks, ms, null_model),
.combine='dtcomb',
.multicombine=TRUE,
.export = c("compute_p_values",
"sample_zero_mscor_data"),
.packages = c("foreach", "logging", "data.table"),
.noexport = c("sponge_result")) %dopar% {
partition <- dt.m$value
if(is.null(partition)) return(NULL)
compute_p_values(
partition = partition,
null_model = dt.m$sim.data,
number_of_datasets = number_of_datasets)
}
result[,cor_cut := NULL]
result[, df_cut := NULL]
loginfo("Finished computing p-values.")
return(as.data.frame(result))
}
#' Build null model for p-value computation
#'
#' @param number_of_datasets the number of datesets defining the
#' precision of the p-value
#' @param number_of_samples the number of samples in the expression data
#' @param cov_matrices pre-computed covariance matrices
#' @param log.level The log level of the logging package
#' @param ks a sequence of gene-gene correlation values for which null models
#' are computed
#' @param m_max null models are build for each elt in ks for 1 to m_max miRNAs
#' @return a list (for various values of m) of lists (for various values of k)
#' of lists of simulated data sets, drawn from a set of precomputed
#' covariance matrices
#' @import foreach
#' @import logging
#' @importFrom data.table data.table
#' @importFrom data.table setkey
#' @export
#'
#' @examples sponge_build_null_model(100, 100,
#' cov_matrices = precomputed_cov_matrices[1:3], m_max = 3)
sponge_build_null_model <- function(number_of_datasets = 1e5,
number_of_samples,
cov_matrices = precomputed_cov_matrices,
ks = seq(0.2, 0.90, 0.1),
m_max = 8,
log.level = "ERROR"){
loginfo("Constructing SPONGE null model.")
if(number_of_datasets < 1) stop("number_of_datasets has to be >= 1")
if(any(ks <= 0) | any(ks >= 1)) stop("all ks have to be >0 and <1")
if(m_max < 1) stop("m_max has to be >= 1")
ms <- seq_len(m_max)
if((number_of_samples - 2 - m_max) <= 1)
stop(paste0("sample number to small for m_max = ", m_max))
null_model <- foreach(cov.matrices.m = cov_matrices[as.character(ms)],
m = ms,
.final = function(x) setNames(x, as.character(ms)),
.inorder = TRUE) %:%
foreach(cov.matrices.k = cov.matrices.m[as.character(ks)],
k = ks,
.final = function(x) setNames(x, as.character(ks)),
.inorder = TRUE,
.packages = c("data.table", "gRbase", "MASS",
"ppcor", "logging", "foreach")) %dopar%{
if(is.null(cov.matrices.k))
stop("Covariance matrix missing for simulating data.")
basicConfig(level = log.level)
logdebug(
paste0(
"Simulating data for null model of partition m = ",
m, " and k = ", k))
compute_null_model(
cov_matrices = cov.matrices.k,
number_of_datasets = number_of_datasets,
number_of_samples = number_of_samples)
}
loginfo("Finished constructing SPONGE null model.")
return(null_model)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.