R/siamcat_class_constructor.R

Defines functions validate.metadata validate.label validate.features is.component.class get.component.classes siamcat

Documented in get.component.classes siamcat

#!/usr/bin/Rscript
### SIAMCAT - Statistical Inference of Associations between
### Microbial Communities And host phenoTypes R flavor EMBL
### Heidelberg 2012-2018 GNU GPL 3.0

#' Build siamcat-class objects from their components.
#' @title SIAMCAT constructor function
#' @name siamcat
#' @description Function to construct an object of class \link{siamcat-class}
#' @usage siamcat(..., feat=NULL, label=NULL, meta=NULL,
#'     phyloseq=NULL, validate=TRUE, verbose=3)
#' @param ... additional arguments
#' @param feat feature information for SIAMCAT (see details)
#' @param label label information for SIAMCAT (see details)
#' @param meta (optional) metadata information for SIAMCAT (see details)
#' @param phyloseq (optional) a phyloseq object for the creation of an SIAMCAT
#' object (see details)
#' @param validate boolean, should the newly constructed SIAMCAT object be
#' validated? defaults to TRUE (\strong{we strongly recommend against
#' setting this parameter to FALSE})
#' @param verbose control output: \code{0} for no output at all, \code{1}
#' for only information about progress and success, \code{2} for normal
#' level of information and \code{3} for full debug information,
#' defaults to \code{1}
#' @return A new \link{siamcat-class} object
#' @export
#' @details This functions creates a SIAMCAT object (see \link{siamcat-class}).
#' In order to do so, the function needs \itemize{
#' \item \code{feat} the feature information for SIAMCAT, should be either a
#' matrix, a data.frame, or a \link[phyloseq]{otu_table-class}. The columns
#' should correspond to the different samples (e.g. patients) and the rows the
#' different features (e.g. taxa). Columns and rows should be named.
#' \item \code{meta} metadata information for the different samples in the
#' feature matrix. Metadata is optional for the SIAMCAT workflow. Should be
#' either a data.frame (with the rownames corresponding to the sample
#' names of the feature matrix) or an object of class
#' \link[phyloseq]{sample_data-class}
#' \item \code{phyloseq} Alternatively to supplying both feat and meta,
#' SIAMCAT can also work with a phyloseq object containing an otu_table and
#' other optional slots (like sample_data for meta-variables).}
#'
#' Notice: do supply \strong{either} the feature information as
#' matrix/data.frame/otu_table (and optionally metadata) \strong{or} a
#' phyloseq object, but not both.
#'
#' The label information for SIAMCAT can take several forms:\itemize{
#' \item metadata column: if there is metadata (either via meta or as
#' sample_data in the phyloseq object), the label object can be created
#' by taking the information in a specific metadata column. In order to
#' do so, \code{label} should be the name of the column, and \code{case}
#' should indicate which group(s) should be the positive group(s). A
#' typical example could look like that:
#'
#' \code{siamcat <- siamcat(feat=feat.matrix, meta=metadata,
#'     label='DiseaseState', case='CRC')}
#'
#' for the construction of a label to predict CRC status (which is encoded
#' in the column \code{"DiseaseState"} of the metadata). For more control
#' (e.g. specific labels for plotting or specific control state), the
#' label can also be created outside of the \code{siamcat} function using
#' the \link{create.label} function.
#' \item named vector: the label can also be supplied as named vector which
#' encodes the label either as characters (e.g. "Healthy" and "Diseased"),
#' as factor, or numerically (e.g. -1 and 1). The vector must be named
#' with the names of samples (corresponding to the samples in features).
#' Also here, the information about the positive group(s) is needed via
#' the \code{case} parameter. Internally, the vector is given to the
#' \link{create.label} function.
#' \item label object: A label object can be created with the
#' \link{create.label} function or by reading a dedicated label file
#' with \link{read.label}.
#' }
#' @examples
#' # example with package data
#' data("feat_crc_zeller", package="SIAMCAT")
#' data("meta_crc_zeller", package="SIAMCAT")
#'
#' siamcat <- siamcat(feat=feat.crc.zeller,
#'     meta=meta.crc.zeller,
#'     label='Group',
#'     case='CRC')
siamcat <- function(..., feat=NULL, label=NULL, meta=NULL, phyloseq=NULL,
        validate=TRUE, verbose=3) {

    if (is.null(phyloseq) && is.null(feat)){
        stop(paste0('SIAMCAT needs either a feature matrix or a phyloseq',
            ' object!!! Exiting...'))
    }

    # optional arguments
    other.args <- list(...)

    # keep case info if the user wants to create the label from metadata
    if ('case' %in% names(other.args)){
        case <- other.args$case
    } else {
        case <- NULL
    }

    # Remove names from arglist. Will replace them based on their class
    names(other.args) <- NULL

    if (!is.null(other.args)){
        # ignore all but component data classes.
        component_classes <- get.component.classes("both")

        for (argNr in seq_along(other.args)) {
            classOfArg <- class(other.args[[argNr]])[1]
            if (classOfArg %in% names(component_classes)) {
                names(other.args)[argNr] <- component_classes[classOfArg]
            }
        }
    }

    # if phyloseq object has been given
    if (!is.null(phyloseq)){
        if (!is.null(feat)){
            stop(paste0('Both features matrix and phyloseq object provided. ',
                'Please provide only one of them!'))
        }
        if (!is(phyloseq,'phyloseq')){
            stop('Please provide an object of class phyloseq for SIAMCAT!')
        }
        feat <- otu_table(phyloseq)
        if (!is.null(sample_data(phyloseq, errorIfNULL=FALSE))) {
            meta <- sample_data(phyloseq)
        } else {
            meta <- NULL
        }
        # get all other slots from the phyloseq object
        for (x in setdiff(get.component.classes('phyloseq'),
            c('otu_table', 'sam_data'))){
                if (!is.null(access(phyloseq, x))){
                    other.args[[x]] <- access(phyloseq, x)
                }
            }
    }

    # validate features and metadata
    feat <- validate.features(feat)
    meta <- validate.metadata(meta)

    # make Phyloseq object properly
    if (any(vapply(names(other.args), is.component.class, "phyloseq",
        FUN.VALUE = logical(1)))){
            arglistphyloseq <- other.args[vapply(names(other.args),
                is.component.class,
                "phyloseq", FUN.VALUE = logical(1))]
            arglistphyloseq$otu_table = feat
            arglistphyloseq$sam_data = meta
    } else {
        arglistphyloseq <- list('otu_table'=feat, 'sam_data'=meta)
    }
    other.args$phyloseq <- do.call("new", c(list(Class = "phyloseq"),
        arglistphyloseq))

    # label object
    temp <- validate.label(label, feat, meta, case, verbose)
    label <- temp$label
    if (!is.null(temp$meta)){
        sample_data(other.args$phyloseq) <- temp$meta
    }

    other.args$label <- label

    # any other slots
    other.args <-
        other.args[vapply(names(other.args),
            is.component.class,
            "siamcat",
            FUN.VALUE = logical(1))]
    sc <- do.call("new", c(list(Class = "siamcat"), other.args))

    # validate
    if (validate){
        sc <- validate.data(sc, verbose=verbose)
    } else {
        if (verbose > 0){
            warning(paste0('### Not validating the SIAMCAT object!!!\n',
            '\tPlease be advised that some functions may not work correctly!'))
        }
    }

    return(sc)
}

# source: https://github.com/joey711/phyloseq/blob/master/R/phyloseq-class.R
#' Show the component objects classes and slot names.
#' @keywords internal
#' @return list of component classes
get.component.classes <- function(class) {
    # define classes vector the names of component.classes needs to be the slot
    # names to match getSlots / splat

    #slot names
    component.classes.siamcat <-
        c(
            "phyloseq",
            "label",
            "filt_feat",
            "associations",
            "norm_feat",
            "data_split",
            "model_list",
            "pred_matrix",
            "eval_data"
        )
    #class names
    names(component.classes.siamcat) <-
        c(
            "phyloseq",
            "label",
            "filt_feat",
            "associations",
            "norm_feat",
            "data_split",
            "model_list",
            "pred_matrix",
            "eval_data"
        )

    #slot names
    component.classes.phyloseq <-
        c("otu_table", "sam_data", "phy_tree",
            "tax_table", "refseq")

    #class names
    names(component.classes.phyloseq) <-
        c("otu_table",
            "sample_data",
            "phylo",
            "taxonomyTable",
            "XStringSet")

    if (class == "siamcat") {
        return(component.classes.siamcat)
    } else if (class == "phyloseq") {
        return(component.classes.phyloseq)
    } else if (class == "both") {
        return(c(
            component.classes.siamcat,
            component.classes.phyloseq
        ))
    }
}

# Returns TRUE if x is a component class, FALSE otherwise.
#' @keywords internal
is.component.class = function(x, class) {
    x %in% get.component.classes(class)
}

# check and convert feature object to otu_table
#' @keywords internal
validate.features <- function(feat){
    # check if NA and stop
    if (is.null(feat)){
        stop('SIAMCAT needs features!!! Exiting...')
    }
    # check class of feature input
    if (is(feat,'otu_table')){
        # can either be an otu_table (only check that taxa_are_rows == TRUE)
        if (!taxa_are_rows(feat)){
            feat <- otu_table(t(feat@.Data), taxa_are_rows=TRUE)
        }
        return(feat)
    } else if (is(feat, 'matrix')){
        # or a matrix (then check if it is numeric or not)
        # and convert to otu_table
        if (any(!is.numeric(feat))){
            stop(paste0('SIAMCAT expects numerical features!.\n',
            'Please check your feature matrix! Exiting...'))
        }
        feat <- otu_table(feat, taxa_are_rows=TRUE)
        return(feat)
    } else if (is.data.frame(feat)){
        # or a dataframe (then do the same as above)
        if (any(!is.numeric(unlist(feat)))){
            stop(paste0('SIAMCAT expects numerical features!.\n',
            'Please check your feature data.frame! Exiting...'))
        }
        feat <- otu_table(feat, taxa_are_rows=TRUE)
        return(feat)
    }
}

# check label object
#' @keywords internal
validate.label <- function(label, feat, meta, case, verbose){
    # if NA, return simple label object which contains only one class
    if (is.null(label)){
        warning(paste0('No label information given! Generating SIAMCAT object ',
        'with placeholder label!\n\tThis SIAMCAT object is not suitable for ',
        'the complete workflow...'))
        label <- list(label = rep(-1, ncol(feat)),
            info=c('TEST'=-1), type="TEST")
        names(label$label) <- colnames(feat)
    } else if (is.list(label)){
        label <- label
    } else if (is.character(label) & length(label) == 1){
        if(is.null(meta)) stop('Metadata needed to generate label! Exiting...')
        if(is.null(case)) stop('Case information needed! Exiting...')
        temp <- create.label(meta=meta, label=label, case=case,
            verbose=verbose, remove.meta.column=TRUE)
        label <- temp$label
        meta <- temp$meta
    } else if (is.atomic(label)) {
        if(is.null(case)) stop('Case information needed! Exiting...')
        label <- create.label(label=label, case=case, verbose=verbose)
    } else {
        stop(paste0('Cannot interpret the label object!\nPlease ',
            'provide either a label object, a column in your metadata, or a
            vector to distinguish cases and controls!.'))
    }
    return(list(label=label, meta=meta))
}

# check meta-data object
#' @keywords internal
validate.metadata <- function(meta){
    if (is.null(meta)){
        return(NULL)
    }
    if (is(meta, 'sample_data')){
        return(meta)
    }
    if (is.data.frame(meta)){
        meta <- sample_data(meta)
        return(meta)
    }
}

Try the SIAMCAT package in your browser

Any scripts or data that you put into this service are public.

SIAMCAT documentation built on Nov. 8, 2020, 5:14 p.m.