R/regenrich_rankScore.R

Defines functions .rankScore .regenrich_rankScore

#' @rdname regenrich_rankScore
#' @export
setGeneric("regenrich_rankScore",
           function(object) standardGeneric("regenrich_rankScore"))

.regenrich_rankScore = function(object) {
  enrichTest = object@paramsIn$enrichTest
  enrichTest = match.arg(enrichTest, enrichTest)
  
  resEnrich = object@resEnrich
  pFC = mcols(object)
  
  if (enrichTest == "FET") {
    resFET = resEnrich@allResult
    stopifnot(rownames(resFET) > 0)
    res = .rankScore(resFET = resFET, pDEA = pFC[, seq(2)],
                     fcDEA = pFC[, c(1, 3)])
  } else if (enrichTest == "GSEA") {
    resSEA = resEnrich@allResult
    stopifnot(rownames(resSEA) > 0)
    res = .rankScore(resSEA = resSEA, pDEA = pFC[, seq(2)],
                     fcDEA = pFC[, c(1, 3)])
  } else {
    stop("'enrichTest' must be 'FET' or 'GSEA'.")
  }
  
  object@resScore = res
  return(object)
}

#' Regulator scoring and ranking
#'
#' As the fourth step of RegEnrich analysis, regulator ranking
#' is followed by differential expression analysis (regenrich_diffExpr),
#' regulator-target network inference (regenrich_network), and
#' enrichment analysis (regenrich_enrich).
#'
#' @param object a `RegenrichSet` object, to which
#' \code{\link{regenrich_diffExpr}}, \code{\link{regenrich_network}},
#' and \code{\link{regenrich_enrich}} functions all have been already applied.
#'
#' @return This function returns a `RegenrichSet` object
#' with an updated `resScore` slots, which is a `regEnrichScore` (also
#' `data.frame`) object, and an updated
#' `paramsIn` slot. In the `regEnrichScore` object there are five columns,
#' which are 'reg' (regulator), 'negLogPDEA' (-log10(p values of differential
#' expression analysis)), 'negLogPEnrich' (-log10(p values of enrichment
#' analysis), 'logFC' (log2 fold changes), and 'score' (RegEnrich ranking
#' score).
#' @rdname regenrich_rankScore
#' @include regenrichClasses.R
#' @seealso Previous step \code{\link{regenrich_enrich}}.
#' @export
#' @examples
#' # library(RegEnrich)
#' data("Lyme_GSE63085")
#' data("TFs")
#' 
#' data = log2(Lyme_GSE63085$FPKM + 1)
#' colData = Lyme_GSE63085$sampleInfo
#' 
#' # Take first 2000 rows for example
#' data1 = data[seq(2000), ]
#'
#' design = model.matrix(~0 + patientID + week, data = colData)
#' 
#' # Initializing a 'RegenrichSet' object
#' object = RegenrichSet(expr = data1,
#'                       colData = colData,
#'                       method = 'limma', minMeanExpr = 0,
#'                       design = design,
#'                       contrast = c(rep(0, ncol(design) - 1), 1),
#'                       networkConstruction = 'COEN',
#'                       enrichTest = 'FET')
#'
#' \donttest{
#' # Differential expression analysis
#' object = regenrich_diffExpr(object)
#'
#' # Network inference using 'COEN' method
#' object = regenrich_network(object)
#'
#' # Enrichment analysis by Fisher's exact test (FET)
#' object = regenrich_enrich(object)
#'
#' # Regulators ranking
#' (object = regenrich_rankScore(object))
#' }
setMethod("regenrich_rankScore", signature = "RegenrichSet",
          definition = .regenrich_rankScore)



## The key function to calculate RegEnrich rank scores.
## @description The key function to generate a summary table
## for the results of differential analysis, enrichment
## analysis and RegEnrich rank scores.  @param resFET Result
## table by \code{regFET} @param resSEA Result table by
## \code{regSEA}.  If \code{resFET} is provided, this
## \code{resSEA} will not be used.  The default is
## \code{NULL}.  @param pDEA A data.frame of p-values for the
## regulators by differential expression analysis. The first
## column is the gene name/ID, the second column is the
## p-values.  @param fcDEA Same format as pDEA.  log2 fold
## change for the regulators by differential expression
## analysis (optional). The default is \code{NULL}.  @return
## A \code{regEnrichScore} object, including \code{reg}
## (regulators), \code{negLogPDEA} (-log10(pD)),
## \code{negLogPEnrich} (-log10(pE)), \code{logFC}
## (log2(fold change)), \code{score} (RegEnrich scores),
.rankScore = function(resFET = NULL, resSEA = NULL, pDEA, fcDEA = NULL) {
  # stopifnot(!(is.null(resFET) | is.null(resSEA)))
  if (!is.null(resFET)) {
    enrichP = data.frame(reg = resFET$ID, pval = resFET$pvalue,
                         padj = resFET$p.adjust, stringsAsFactors = FALSE)
  } else {
    if (!is.null(resSEA)) {
      enrichP = data.frame(reg = resSEA$regulator, pval = resSEA$pval,
                           padj = resSEA$padj, stringsAsFactors = FALSE)
    } else {
      stop("Either 'resFET' or 'resSEA' should be provided!")
    }
  }
  
  # Calculate -log10(p)
  stopifnot(!any(duplicated(pDEA[, 1])))  # Gene duplicates are not allowed
  id = match(enrichP$reg, pDEA[, 1])
  negLogPDEA = -log10(pDEA[id, 2])
  negLogPDEA[is.na(negLogPDEA)] = 0
  
  negLogPEnrich = -log10(enrichP$pval)
  negLogPEnrich[is.infinite(negLogPEnrich)] =
    max(negLogPEnrich[!is.infinite(negLogPEnrich)])
  
  # Include fold change
  if (!is.null(fcDEA)) {
    id = match(enrichP$reg, fcDEA[, 1])
    logFC = fcDEA[id, 2]
  } else {
    logFC = Inf
  }
  
  # Calculate scores
  normFun = function(x) {
    mx = max(x[is.finite(x)])
    mnx = min(x[is.finite(x)])
    if ((mx - mnx) == 0) {
      return(rep(0, length(x)))
    } else {
      normx = (x - mnx)/(mx - mnx)
      normx[is.infinite(normx)] = 1
      return(normx)
    }
  }
  score = normFun(negLogPDEA) + normFun(negLogPEnrich)
  
  res = newScore(reg = enrichP$reg, negLogPDEA = negLogPDEA,
                 negLogPEnrich = negLogPEnrich, logFC = logFC, 
                 score = score)
  if (nrow(res) > 0) {
    res = arrange(as.data.frame(res), desc(score))
    rownames(res) = seq(nrow(res))
  }
  res = as(res, "Score")
  return(res)
}

Try the RegEnrich package in your browser

Any scripts or data that you put into this service are public.

RegEnrich documentation built on March 7, 2021, 2 a.m.