R/GRN.R

Defines functions grNet .local_grNet GRN

# Constructing Gene Regulatory Network (GRN)
# @description \code{GRN} is a function to construct the GRN network
# using random forest algorithm. This method was initially introduced in
# GENIE3, but here, GRN support parallel computing. It can control the
# model accuracy, and define the regulators in the network.
# @param expr Gene expression data, either a matrix or a data frame.
# By default (\code{rowSample = FALSE}), each row represents a gene,
# each column represents a sample.
# @param reg vector of charactors, representing gene regulators.
# By default, these are transcription factors and co-factors,
# defined by three literatures/databases, namely RegNet, TRRUST, and
# Marbach2016.
# @param rowSample logical If \code{TRUE}, each row represents a sample.
# The default is \code{FALSE}.
# @param K integer or character. The number of features in each tree,
# can be either a integer number, \code{sqrt}, or \code{all}.
# \code{sqrt} denotes sqrt(the number of \code{reg}), \code{all}
# means the number of \code{reg}. The default is \code{sqrt}.
# @param nbTrees integer. The number of trees. The default is 1000.
# @param importanceMeasure character. The importance type in
# \code{importance}. importanceMeasure can be \code{\%IncMSE}  or
# \code{IncNodePurity}, corresponding to type = 1 and 2 in
# \code{importance}. The default is \code{IncNodePurity}
# (decrease in node impurity), which is faster than \code{\%IncMSE}
# (decrease in accuracy).
# @param trace logical. To show the progress or not (default).
# @param BPPARAM parameters for parallel computing (default is
# \code{bpparam()}).
# @param maxMSE numeric. The maximum out-of-bag MSE is to control model
# accuracy. The default is NULL, which means no filtering by this parameter.
# @param minR numeric. The minimum correlation coefficient of prediction is to
# control model accuracy. The default is 0.3.
# @param ... the rest parameters in \code{\link{randomForest}} function.
#
# @return A list of 'weightHi' and 'performanceHi'. 'weightHi' is the edge
# weights by high accurate model, and 'performanceHi' is the performances
# of high accurate models.
#' @import randomForest
#' @import BiocParallel
#' @import tibble
#' @include globals.R
# @export
GRN = function(expr, reg = TFs$TF_name, rowSample = FALSE, 
               K = "sqrt", nbTrees = 1000, importanceMeasure = "IncNodePurity", 
               trace = FALSE, BPPARAM = bpparam(), maxMSE = NULL, 
               minR = 0.3, ...) {
  stopifnot(is.null(maxMSE) || maxMSE > 0)
  stopifnot(is.null(minR) || (minR > 0 & minR < 1))
  
  inout = inOutput(expr = expr, reg = reg, rowSample = rowSample)
  inputMatrix = inout$inputMatrix
  outputMatrix = inout$outputMatrix
  
  net = grNet(inputMatrix, outputMatrix, K = K, nbTrees = nbTrees, 
              importanceMeasure = importanceMeasure, trace = trace, 
              BPPARAM = bpparam(), ...)
  weight = net$weight
  performance = net$performance
  
  # Only to use the good models
  performanceHi = performance
  if (!is.null(maxMSE)) {
    # performanceHi = performanceHi[mse <= maxMSE]
    performanceHi = filter(performanceHi, mse <= maxMSE)
  }
  if (!is.null(minR)) {
    # performanceHi = performanceHi[r >= minR]
    performanceHi = filter(performanceHi, r >= minR)
  }
  
  modelHi = performanceHi$gene
  if (length(modelHi) == 0) {
    stop("All models are not good enough, please check if 'maxMSE' ", 
         "and 'minR' were properly set, or try other ", 
         "network inference methods.")
  }
  # weightHi = weight[to.gene %in% modelHi]
  weightHi = filter(weight, to.gene %in% modelHi)
  return(list(weightHi = weightHi, performanceHi = performanceHi))
}

.local_grNet = function(targetGeneIdx, inputGeneNames, 
                        outputGeneNames, inputMatrix, outputMatrix, K, 
                        nbTrees, importanceMeasure, trace, nodesizeInArgs, 
                        ...) {
  num.samples = nrow(outputMatrix)
  num.genes = ncol(outputMatrix)
  if (trace) {
    cat(paste("Computing gene ", targetGeneIdx, 
              "/", num.genes, "\n", sep = ""))
    utils::flush.console()
  }
  targetGeneName = outputGeneNames[targetGeneIdx]
  theseInputGeneNames = setdiff(inputGeneNames, targetGeneName)
  x = inputMatrix[, theseInputGeneNames]
  numInputGenes = length(theseInputGeneNames)
  y = outputMatrix[, targetGeneName]
  if (is(K, "numeric")) {
    mtry = K
  } else if (K == "sqrt") {
    mtry = round(sqrt(numInputGenes))
  } else if (K == "all") {
    mtry = numInputGenes
  } else {
    stop("Parameter K must be \"sqrt\", or \"all\", or an integer")
  }
  if (trace) {
    cat(paste("K = ", mtry, ", ", nbTrees, " trees\n\n", 
              sep = ""))
    utils::flush.console()
  }
  if (importanceMeasure == "%IncMSE") {
    y = y
    importance0 = TRUE
    type0 = 1
  } else {
    y = y/sd(y)
    importance0 = FALSE
    type0 = 2
  }
  if (nodesizeInArgs) {
    rf = randomForest(x, y, mtry = mtry, ntree = nbTrees, 
                      importance = importance0, ...)
  } else {
    rf = randomForest(x, y, mtry = mtry, ntree = nbTrees, 
                      importance = importance0, nodesize = 1, 
                      ...)
  }
  im = importance(rf, type = type0)
  weight = tibble(from.gene = rownames(im), 
                  to.gene = rep(targetGeneName, nrow(im)), 
                  imp = as.vector(im)/num.samples)
  y_hat = stats::predict(rf)
  return(list(weight = weight, mse = sum((y_hat - y)^2)/length(y), 
              r = as.numeric(cor(y_hat, y)), 
              p = stats::cor.test(y_hat, y, alternative = "greater")$p.value, 
              pVarExplaned = rf$rsq[length(rf$rsq)] * 100))
}


grNet = function(inputMatrix, outputMatrix, K = "sqrt", 
                 nbTrees = 1000, importanceMeasure = "IncNodePurity", 
                 trace = FALSE, BPPARAM = bpparam(), ...) {
  ## All of the matrixs are sample * gene inputMatrix
  ## is Gene Expression matrix of TFs outputMatrix is
  ## Gene Expression matrix of All genes (or TFs)
  
  # Report when parameter importanceMeasure is not
  # correctly spelled
  if (importanceMeasure != "IncNodePurity" && importanceMeasure != 
      "%IncMSE") {
    stop("Parameter importanceMeasure must be ", 
         "\"IncNodePurity\" or \"%IncMSE\"")
  }
  # Check if nodesize parameter is in the input
  # arguments
  args = list(...)
  nInArgs = "nodesize" %in% names(args)
  outputGeneNames = colnames(outputMatrix)
  inputGeneNames = colnames(inputMatrix)
  
  idx = stats::setNames(seq(ncol(outputMatrix)), 
                        nm = outputGeneNames)
  
  tic = system.time({
    res = bplapply(idx, function(targetGeneIdx0) {
      .local_grNet(targetGeneIdx0, inputGeneNames, 
                   outputGeneNames, inputMatrix, outputMatrix, 
                   K, nbTrees, importanceMeasure, trace, 
                   nodesizeInArgs = nInArgs, ...)
    }, BPPARAM = BPPARAM)
  })
  
  if (trace) {
    cat("GRN network inference costs", tic[3], 
        "seconds.\n")
  }
  weight = do.call("rbind", lapply(res, "[[", "weight"))
  colnames(weight) = c("from.gene", "to.gene", "weight")
  performance = tibble(gene = outputGeneNames, 
                       mse = do.call("c", lapply(res, "[[", "mse")), 
                       r = do.call("c", lapply(res, "[[", "r")), 
                       p = do.call("c", lapply(res, "[[", "p")), 
                       pVarExplaned = do.call("c", lapply(res, "[[", 
                                                          "pVarExplaned")))
  return(list(weight = weight, performance = performance))
}

Try the RegEnrich package in your browser

Any scripts or data that you put into this service are public.

RegEnrich documentation built on March 7, 2021, 2 a.m.