Nothing
#' Calculate Drug Molecule Similarity Derived by
#' Maximum Common Substructure Search
#'
#' Calculate Drug Molecule Similarity Derived by
#' Maximum Common Substructure Search
#'
#' This function calculate drug molecule similarity derived by
#' maximum common substructure search. The maximum common substructure
#' search algorithm is provided by the \code{fmcsR} package.
#'
#' @param mol1 The first molecule. R character string object
#' containing the molecule. See examples.
#' @param mol2 The second molecule. R character string object
#' containing the molecule. See examples.
#' @param type The input molecule format, 'smile' or 'sdf'.
#' @param plot Logical. Should we plot the two molecules and
#' their maximum common substructure?
#' @param al Lower bound for the number of atom mismatches. Default is 0.
#' @param au Upper bound for the number of atom mismatches. Default is 0.
#' @param bl Lower bound for the number of bond mismatches. Default is 0.
#' @param bu Upper bound for the number of bond mismatches. Default is 0.
#' @param matching.mode Three modes for bond matching are supported:
#' \code{'static'}, \code{'aromatic'}, and \code{'ring'}.
#' @param ... Other graphical parameters
#'
#' @return A list containing the detail MCS information and similarity values.
#' The numeric similarity value includes Tanimoto coefficient
#' and overlap coefficient.
#'
#' @keywords calcDrugMCSSim Drug Similarity MCS Maximum Common Substructure
#'
#' @aliases calcDrugMCSSim
#'
#' @author Nan Xiao <\url{https://nanx.me}>
#'
#' @export calcDrugMCSSim
#'
#' @references
#' Wang, Y., Backman, T. W., Horan, K., & Girke, T. (2013).
#' fmcsR: mismatch tolerant maximum common substructure searching in R.
#' Bioinformatics, 29(21), 2792--2794.
#'
#' @examples
#' mol1 = 'CC(C)CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC'
#' mol2 = 'O=C(NCc1cc(OC)c(O)cc1)CCCC/C=C/C(C)C'
#' mol3 = readChar(system.file('compseq/DB00859.sdf', package = 'Rcpi'), nchars = 1e+6)
#' mol4 = readChar(system.file('compseq/DB00860.sdf', package = 'Rcpi'), nchars = 1e+6)
#' \donttest{
#' sim1 = calcDrugMCSSim(mol1, mol2, type = 'smile')
#' sim2 = calcDrugMCSSim(mol3, mol4, type = 'sdf', plot = TRUE)
#' print(sim1[[2]]) # Tanimoto Coefficient
#' print(sim2[[3]]) # Overlap Coefficient}
calcDrugMCSSim = function(
mol1, mol2, type = c('smile', 'sdf'), plot = FALSE,
al = 0, au = 0, bl = 0, bu = 0,
matching.mode = 'static', ...) {
if (type == 'smile') {
# smile to sdfset
sdfset1 = ChemmineR::smiles2sdf(mol1)
sdfset2 = ChemmineR::smiles2sdf(mol2)
} else if (type == 'sdf') {
# sdf to sdfset
sdfstr1 = ChemmineR::read.SDFstr(textConnection(mol1))
sdfstr2 = ChemmineR::read.SDFstr(textConnection(mol2))
sdfset1 = as(sdfstr1, 'SDFset')
sdfset2 = as(sdfstr2, 'SDFset')
} else {
stop('Molecule type must be "smile" or "sdf"')
}
mcs = fmcsR::fmcs(sdfset1, sdfset2, al = al, au = au, bl = bl, bu = bu,
matching.mode = matching.mode, fast = FALSE)
if (plot == TRUE) fmcsR::plotMCS(mcs, ...)
x = list(mcs,
mcs@stats['Tanimoto_Coefficient'],
mcs@stats['Overlap_Coefficient'])
return(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.