Nothing
## Gender study data. Requires the RUVnormalizeData data package.
if(require('RUVnormalizeData')){
## library(spams)
data('gender', package='RUVnormalizeData')
Y <- t(exprs(gender))
X <- as.numeric(phenoData(gender)$gender == 'M')
X <- X - mean(X)
X <- cbind(X/(sqrt(sum(X^2))))
chip <- annotation(gender)
## Extract regions and labs for plotting purposes
lregions <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[1]][2])
llabs <- sapply(rownames(Y),FUN=function(s) strsplit(s,'_')[[1]][3])
## Dimension of the factors
m <- nrow(Y)
n <- ncol(Y)
p <- ncol(X)
Y <- scale(Y, scale=FALSE) # Center gene expressions
cIdx <- which(featureData(gender)$isNegativeControl) # Negative control genes
## Prepare plots
annot <- cbind(as.character(sign(X)))
colnames(annot) <- 'gender'
plAnnots <- list('gender'='categorical')
lab.and.region <- apply(rbind(lregions, llabs),2,FUN=function(v) paste(v,collapse='_'))
gender.col <- c('-1' = "deeppink3", '1' = "blue")
## Remove platform effect by centering.
Y[chip=='hgu95a.db',] <- scale(Y[chip=='hgu95a.db',], scale=FALSE)
Y[chip=='hgu95av2.db',] <- scale(Y[chip=='hgu95av2.db',], scale=FALSE)
## Prepare control samples
scIdx <- matrix(-1,84,3)
rny <- rownames(Y)
added <- c()
c <- 0
## Replicates by lab
for(r in 1:(length(rny) - 1)){
if(r %in% added)
next
c <- c+1
scIdx[c,1] <- r
cc <- 2
for(rr in seq(along=rny[(r+1):length(rny)])){
if(all(strsplit(rny[r],'_')[[1]][-3] == strsplit(rny[r+rr],'_')[[1]][-3])){
scIdx[c,cc] <- r+rr
cc <- cc+1
added <- c(added,r+rr)
}
}
}
scIdxLab <- scIdx
scIdx <- matrix(-1,84,3)
rny <- rownames(Y)
added <- c()
c <- 0
## Replicates by region
for(r in 1:(length(rny) - 1)){
if(r %in% added)
next
c <- c+1
scIdx[c,1] <- r
cc <- 2
for(rr in seq(along=rny[(r+1):length(rny)])){
if(all(strsplit(rny[r],'_')[[1]][-2] == strsplit(rny[r+rr],'_')[[1]][-2])){
scIdx[c,cc] <- r+rr
cc <- cc+1
added <- c(added,r+rr)
}
}
}
scIdx <- rbind(scIdxLab,scIdx)
## Number of genes kept for clustering, based on their variance
nKeep <- 1260
##-----------------------
## Run different methods
##-----------------------
## No correction
sdY <- apply(Y, 2, sd)
ssd <- sort(sdY, decreasing=TRUE, index.return=TRUE)$ix
kmres <- kmeans(Y[, ssd[1:nKeep], drop=FALSE], centers=2, nstart=200)
vclust <- kmres$cluster
uScore <- clScore(vclust,X)
svdResUncorr <- NULL
svdResUncorr <- svdPlot(Y[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdResUncorr,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
## Centering by region-lab
YmeanCorr <- Y
for(rr in unique(lregions)){
for(ll in unique(llabs)){
YmeanCorr[(lregions==rr)&(llabs==ll),] <- scale(YmeanCorr[(lregions==rr)&(llabs==ll),],scale=FALSE)
}
}
sdY <- apply(YmeanCorr, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmresMC <- kmeans(YmeanCorr[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclustMC <- kmresMC$cluster
MCScore <- clScore(vclustMC, X)
svdResMC <- NULL
svdResMC <- svdPlot(YmeanCorr[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdResMC,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
## Naive RUV-2 no shrinkage
k <- 20
nu <- 0
nsY <- naiveRandRUV(Y, cIdx, nu.coeff=0, k=k)
sdY <- apply(nsY, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmres2ns <- kmeans(nsY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclust2ns <- kmres2ns$cluster
nsScore <- clScore(vclust2ns, X)
svdRes2ns <- NULL
svdRes2ns <- svdPlot(nsY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdRes2ns,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
## Naive RUV-2 + shrinkage
k <- m
nu.coeff <- 1e-2
nY <- naiveRandRUV(Y, cIdx, nu.coeff=nu.coeff, k=k)
sdY <- apply(nY, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmres2 <- kmeans(nY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclust2 <- kmres2$cluster
nScore <- clScore(vclust2,X)
svdRes2 <- NULL
svdRes2 <- svdPlot(nY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdRes2,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
## Replicate-based
sRes <- naiveReplicateRUV(Y, cIdx, scIdx, k=20)
sdY <- apply(sRes$cY, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmresRep <- kmeans(sRes$cY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclustRep <- kmresRep$cluster
RepScore <- clScore(vclustRep,X)
svdResRep <- NULL
svdResRep <- svdPlot(sRes$cY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdResRep,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
if (!require(spams))
{
print('Iterative-based estimators were not run because they require the spams package to be loaded. Spams can be obtained for free from http://spams-devel.gforge.inria.fr/downloads.html')
IterScore <- IterRandScore <- NA
}else {
## Iterative replicate-based
cEps <- 1e-6
maxIter <- 30
p <- 20
paramXb <- list()
paramXb$K <- p
paramXb$D <- matrix(c(0.),nrow = 0,ncol=0)
paramXb$batch <- TRUE
paramXb$iter <- 1
## l1
paramXb$mode <- 'PENALTY'
paramXb$lambda <- 0.25
iRes <- iterativeRUV(Y, cIdx, scIdx, paramXb, k=20, nu.coeff=0,
cEps, maxIter,
Wmethod='rep', wUpdate=11)
ucY <- iRes$cY
sdY <- apply(ucY, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmresIter <- kmeans(ucY[,ssd[1:nKeep]],centers=2,nstart=200)
vclustIter <- kmresIter$cluster
IterScore <- clScore(vclustIter,X)
svdResIter <- NULL
svdResIter <- svdPlot(ucY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdResIter,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
## Iterated ridge
paramXb <- list()
paramXb$K <- p
paramXb$D <- matrix(c(0.),nrow = 0,ncol=0)
paramXb$batch <- TRUE
paramXb$iter <- 1
paramXb$mode <- 'PENALTY' #2
paramXb$lambda <- 1
paramXb$lambda2 <- 0
iRes <- iterativeRUV(Y, cIdx, scIdx=NULL, paramXb, k=nrow(Y), nu.coeff=1e-2/2,
cEps, maxIter,
Wmethod='svd', wUpdate=11)
nrcY <- iRes$cY
sdY <- apply(nrcY, 2, sd)
ssd <- sort(sdY,decreasing=TRUE,index.return=TRUE)$ix
kmresIter <- kmeans(nrcY[,ssd[1:nKeep]],centers=2,nstart=200)
vclustIter <- kmresIter$cluster
IterRandScore <- clScore(vclustIter,X)
svdResIterRand <- NULL
svdResIterRand <- svdPlot(nrcY[, ssd[1:nKeep], drop=FALSE],
annot=annot,
labels=lab.and.region,
svdRes=svdResIterRand,
plAnnots=plAnnots,
kColors=gender.col, file=NULL)
}
scores <- c(uScore, MCScore, nsScore, nScore, RepScore, IterScore, IterRandScore)
names(scores) <- c('Uncorrected', 'Centered', 'Naive RUV-2', 'Naive + shrink', 'Replicates', 'Replicates + iter', 'Shrinkage + iter')
print('Clustering errors after each correction')
print(scores)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.