Nothing
#' @include RNAmodR.R
#' @include ModifierSet-class.R
NULL
#' @name compareByCoord
#' @aliases compare compareByCoord plotCompare plotCompareByCoord
#'
#' @title Comparison of Samples
#'
#' @description
#' To compare data of different samples, a
#' \code{\link[=ModifierSet-class]{ModifierSet}} can be used. To select the data
#' alongside the transcripts and their positions a
#' \code{\link[GenomicRanges:GRanges-class]{GRanges}} or a
#' \code{\link[GenomicRanges:GRanges-class]{GRangesList}} needs to be provided.
#' In case of a \code{GRanges} object, the parent column must match the
#' transcript names as defined by the out put of \code{ranges(x)}, whereas in
#' case of a \code{GRangesList} the element names must match the transcript
#' names.
#'
#' @param x a \code{Modifier} or \code{ModifierSet} object.
#' @param coord coordinates of position to subset to. Either a \code{GRanges} or
#' a \code{GRangesList} object. For both types the 'Parent' column is expected
#' to match the transcript name. The \code{GRangesList} object is
#' unlisted and only non duplicated entries are retained.
#' @param name Only for \code{compare}: the transcript name
#' @param pos Only for \code{compare}: pos for comparison
#' @param normalize either a single logical or character value. If it is a
#' character, it must match one of the names in the \code{ModifierSet}.
#' @param ... optional parameters:
#' \itemize{
#' \item{\code{alias}} {a data.frame with two columns, \code{tx_id} and
#' \code{name}, to convert transcipt ids to another identifier}
#' \item{\code{name}} {Limit results to one specific gene or transcript}
#' \item{\code{sequenceData}} {TRUE or FALSE? Should the aggregate of
#' sequenceData be used for the comparison instead of the aggregate data if each
#' \code{Modifier} element? (default: \code{sequenceData = FALSE})}
#' \item{\code{compareType}} {a valid score type to use for the comparison. If
#' \code{sequenceData = FALSE} this defaults to \code{mainScore(x)}, whereas
#' if \code{sequenceData = TRUE} all columns will be used by setting
#' \code{allTypes = TRUE}.}
#' \item{\code{allTypes}} {TRUE or FALSE? Should all available score be
#' compared? (default: \code{allTypes = sequenceData})}
#' \item{...} {passed on to \code{\link{subsetByCoord}}}
#' }
#'
#' @return \code{compareByCoord} returns a
#' \code{\link[S4Vectors:DataFrame-class]{DataFrame}} and
#' \code{plotCompareByCoord} returns a \code{ggplot} object, which can be
#' modified further. The \code{DataFrame} contains columns per sample as well
#' as the columns \code{names}, \code{positions} and \code{mod} incorporated
#' from the \code{coord} input. If \code{coord} contains a column
#' \code{Activity} this is included in the results as well.
#'
#' @examples
#' data(msi,package="RNAmodR")
#' # constructing a GRanges obejct to mark positive positions
#' mod <- modifications(msi)
#' coord <- unique(unlist(mod))
#' coord$score <- NULL
#' coord$sd <- NULL
#' # return a DataFrame
#' compareByCoord(msi,coord)
#' # plot the comparison as a heatmap
#' plotCompareByCoord(msi,coord)
NULL
.norm_alias <- function(input, x){
alias <- NULL
if(!is.null(input[["alias"]])){
alias <- input[["alias"]]
if(!is.data.frame(alias)){
stop("'alias' has to be a data.frame with 'tx_id' and 'name' columns.",
call. = FALSE)
}
colnames <- c("tx_id","name")
if(!all(colnames %in% colnames(alias))){
stop("'alias' has to be a data.frame with 'tx_id' and 'name' columns.",
call. = FALSE)
}
alias <- alias[,colnames]
if(any(duplicated(alias$tx_id))){
stop("Values in 'tx_id' have to be unique.",
call. = FALSE)
}
ranges_names <- names(ranges(x))
if(!all(alias$tx_id %in% ranges_names)){
stop("All values in 'tx_id' have to be valid transcript ids used as ",
"names for the data.", call. = FALSE)
}
}
list(alias = alias)
}
.compare_settings <- data.frame(
variable = c("compareType",
"allTypes",
"perTranscript",
"sequenceData"),
testFUN = c(".is_non_empty_string",
".is_a_bool",
".is_a_bool",
".is_a_bool"),
errorValue = c(FALSE,
FALSE,
FALSE,
FALSE),
errorMessage = c("'compareType' must be a character and a valid colname in the aggregated data of 'x'.",
"'allTypes' must be a single logical value.",
"'perTranscript' must be a single logical value.",
"'sequenceData' must be a single logical value."),
stringsAsFactors = FALSE)
.norm_compare_args <- function(input, data, x){
if(is(x,"ModifierSet")){
compareType <- mainScore(x)
} else {
compareType <- NA_character_
}
allTypes <- FALSE
perTranscript <- FALSE
sequenceData <- FALSE
args <- .norm_settings(input, .compare_settings, compareType, allTypes,
perTranscript, sequenceData)
if(args[["sequenceData"]] && is.null(input[["allTypes"]]) &
is.null(input[["compareType"]])){
args[["allTypes"]] <- TRUE
}
colnames <- colnames(unlist(data[[1]]))
if(args[["allTypes"]]){
args[["compareType"]] <- colnames
}
if(!anyNA(args[["compareType"]]) && !(args[["compareType"]] %in% colnames)){
stop("'compareType' must be a character and a valid colnames in the ",
"aggregated data of 'x'.", call. = FALSE)
}
if(anyNA(args[["compareType"]]) & args[["sequenceData"]] &
!args[["allTypes"]]){
stop("'compareType' must be set if 'sequenceData = TRUE' and ",
"'allTypes = FALSE'", call. = FALSE)
}
args <- c(.norm_alias(input, x),
args)
args
}
.compare_ModifierSet_by_GRangesList <- function(x, coord, normalize, ...){
coord <- unlist(coord)
coord <- unname(coord[!duplicated(coord)])
.compare_ModifierSet_by_GRanges(x, coord, normalize, ...)
}
.assemble_data_per_compare_type <- function(data, coord, sampleNames, alias,
modType){
data <- do.call(cbind,data)
colnames(data) <- sampleNames
if(!is(data,"CompressedSplitDataFrameList")){
data <- IRanges::SplitDataFrameList(data)
}
coord <- coord[match(names(data), names(coord))]
# keep rownames/names and unlist data
positions <- rownames(data)
data_names <- as.character(S4Vectors::Rle(names(data), lengths(data)))
partitioning_data <- IRanges::PartitioningByEnd(data)
data <- unlist(data,use.names=FALSE)
# add names and positions column as factors
data$names <- factor(data_names)
data$positions <- factor(as.integer(unlist(positions)))
rownames(data) <- NULL
# subset to specific modType, if set
if(any(!is.na(modType)) && !is.null(unlist(coord)$mod)){
coord <- coord[mcols(coord,level="within")[,"mod"] %in% modType,]
}
# add activity information if present
unlisted_coord <- unlist(coord,use.names = FALSE)
if(!is.null(unlisted_coord$Activity) || !is.null(unlisted_coord$mod)){
f <- match(start(coord),relist(data$positions,partitioning_data))
ff <- !is.na(f)
f <- f[ff]
f <- f + start(IRanges::PartitioningByEnd(partitioning_data)) - 1L
f <- unlist(f)
if(!is.null(unlisted_coord$Activity)){
data$Activity <- ""
data$Activity[f] <- vapply(unlisted_coord$Activity, paste, character(1),
collapse = "/")[unlist(ff)]
}
if(!is.null(unlisted_coord$mod)){
data$mod <- ""
data$mod[f] <- unlisted_coord$mod[unlist(ff)]
}
}
# convert ids to names for labeling if present
if(!is.null(alias)){
m <- match(data$names,as.character(alias$tx_id))
data$names <- as.character(alias$name)[m[!is.na(m)]]
}
data
}
.compare_ModifierSet_by_GRanges <- function(x, coord, normalize, ...){
coord <- .norm_coord(coord, modType(x))
data <- subsetByCoord(x, coord, ...)
args <- .norm_compare_args(list(...), data, x)
# restructure to different compare types
sampleNames <- names(data)
compareTypes <- args[["compareType"]]
if(args[["sequenceData"]]){
modType <- NA
} else {
modType <- modType(x)
}
data <- lapply(compareTypes,
function(ct){
lapply(data,
function(d){
d[,ct,drop = FALSE]
})
})
names(data) <- compareTypes
# assamble data
data <- lapply(data, .assemble_data_per_compare_type, coord, sampleNames,
args[["alias"]], modType)
# normalize data
data <- lapply(data, .normlize_data_against_one_sample, normalize)
if(length(data) == 1L){
return(data[[1L]])
}
data
}
#' @rdname compareByCoord
#' @export
setMethod("compare",
signature = c("ModifierSet"),
function(x, name, pos = 1L, normalize, ...){
coord <- .construct_coord_from_name_from_to(x, name, pos)
ans <- .compare_ModifierSet_by_GRanges(x, coord, normalize, ...)
ans$mod <- NULL
ans
}
)
#' @rdname compareByCoord
#' @export
setMethod("compareByCoord",
signature = c("ModifierSet","GRanges"),
function(x, coord, normalize, ...){
.compare_ModifierSet_by_GRanges(x, coord, normalize, ...)
}
)
#' @rdname compareByCoord
#' @export
setMethod("compareByCoord",
signature = c("ModifierSet","GRangesList"),
function(x, coord, normalize, ...){
.compare_ModifierSet_by_GRangesList(x, coord, normalize, ...)
}
)
.normlize_data_against_one_sample <- function(data, normalize){
if(!missing(normalize)){
colnames <- colnames(data)
colnames <- colnames[!(colnames %in% c("positions","names","mod","Activity"))]
if(is.character(normalize)){
if(!.is_non_empty_string(normalize)){
stop("'normalize' must be single non empty character value.",
call. = FALSE)
}
if(!(normalize %in% colnames)){
stop("Data column '",normalize,"' not found in data. Available columns",
" are '",paste(colnames, collapse = "','"),"'.",
call. = FALSE)
}
data[,colnames] <- as.data.frame(data[,colnames,drop = FALSE]) -
data[,normalize]
} else if(is.logical(normalize)){
if(!.is_a_bool(normalize)){
stop("'normalize' has to be TRUE or FALSE.",
call. = FALSE)
}
if(normalize){
data[,colnames] <- as.data.frame(data[,colnames,drop = FALSE]) -
apply(data[,colnames],1,max)
}
} else {
stop("'normalize' must be a single character or a logical value.",
call. = FALSE)
}
}
data
}
.norm_compare_plot_args <- function(input){
limits <- NA
if(!is.null(input[["limits"]])){
limits <- input[["limits"]]
if(!is.numeric(limits) | length(limits) != 2L){
stop("'limits' must be numeric vector with the length == 2.",
call. = FALSE)
}
}
args <- list(limits = limits)
args
}
.create_position_labels <- function(positions, mod, activity){
if(is.factor(positions)){
positions <- as.numeric(as.character(positions))
}
tmp <- list(as.character(positions),
mod,
activity)
spacer <- lapply(tmp,
function(el){
if(is.null(el)) return(NULL)
length <- nchar(el)
missingLength <- max(length) - length
unlist(lapply(missingLength,
function(n){
paste0(rep(" ",n),collapse = "")
}))
})
sep <- lapply(seq_along(tmp),
function(i){
if(i > 1L){
rep(" - ",length(tmp[[i]]))
} else {
rep("",length(tmp[[i]]))
}
})
labels <- Map(paste0, spacer, tmp, sep)
labels <- Reduce(paste0, rev(labels))
f <- factor(labels, levels = unique(labels))
stats::reorder(f,positions)
}
.create_sample_labels <- function(labels){
labels <- as.character(labels)
labels <- gsub("\\.", " ",labels)
factor(labels, levels = unique(labels))
}
.plot_compare_ModifierSet_by_GRangesList <- function(x, coord, normalize, ...){
coord <- unlist(coord)
coord <- unname(coord[!duplicated(coord)])
.plot_compare_ModifierSet_by_GRanges(x, coord, normalize, ...)
}
#' @importFrom ggplot2 ggplot geom_raster
#' @importFrom colorRamps matlab.like
#' @importFrom reshape2 melt
.plot_compare_ModifierSet_by_GRanges <- function(x, coord, normalize, ...){
data <- .compare_ModifierSet_by_GRanges(x, coord, normalize, ...)
.plot_compare_ModifierSet(x, data, normalize, ...)
}
.plot_compare_ModifierSet <- function(x, data, normalize, ...){
args <- .norm_compare_plot_args(list(...))
data$labels <- .create_position_labels(data$positions, data$mod,
data$Activity)
# melt data an plot
data$labels <- factor(data$labels, levels = rev(levels(data$labels)))
data$positions <- NULL
data$mod <- NULL
data$Activity <- NULL
data <- reshape2::melt(as.data.frame(data), id.vars = c("names","labels"))
data$variable <- .create_sample_labels(data$variable)
# adjust limits
limits <- NA
if(!missing(normalize) && normalize != FALSE){
max <- max(max(data$value),abs(min(data$value)))
max <- max(max,0.5)
max <- round(max,1) + 0.1
limits <- c(-max,max)
} else {
limits <- c(0,ceiling(max(data$value)))
}
if(all(!is.na(args[["limits"]]))){
if(limits[1L] < args[["limits"]][1L] || limits[2L] > args[["limits"]][2L]){
warning("Default limits for value data modified. This set some values ",
"out of bounds.", call. = FALSE)
}
limits <- args[["limits"]]
}
# plot
ggplot2::ggplot(data) +
ggplot2::geom_raster(mapping = ggplot2::aes_(x = ~variable,
y = ~labels,
fill = ~value)) +
ggplot2::facet_grid(names ~ ., scales = "free", space = "free") +
ggplot2::scale_fill_gradientn(name = "Score",
colours = rev(colorRamps::matlab.like(100)),
limits = limits) +
ggplot2::scale_y_discrete(name = "Positions",
expand = c(0,0)) +
ggplot2::scale_x_discrete(name = "Samples",
position = "top",
expand = c(0,0)) +
ggplot2::theme_minimal() +
ggplot2::theme(strip.text.y = ggplot2::element_text(angle = 0),
axis.text.x.top = ggplot2::element_text(angle = 30,hjust = 0))
}
#' @rdname compareByCoord
#' @export
setMethod("plotCompare",
signature = c("ModifierSet"),
function(x, name, pos = 1L, normalize, ...){
data <- compare(x, name, pos, normalize, ...)
.plot_compare_ModifierSet(x, data, normalize, ...)
}
)
#' @rdname compareByCoord
#' @export
setMethod("plotCompareByCoord",
signature = c("ModifierSet","GRanges"),
function(x, coord, normalize, ...){
.plot_compare_ModifierSet_by_GRanges(x, coord, normalize, ...)
}
)
#' @rdname compareByCoord
#' @export
setMethod("plotCompareByCoord",
signature = c("ModifierSet","GRangesList"),
function(x, coord, normalize, ...){
.plot_compare_ModifierSet_by_GRangesList(x, coord, normalize, ...)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.