Nothing
#' Minimalistic LOCF and LOCB functions.
#'
#' Thanks to http://stackoverflow.com/a/2776751 for the idea.
#' But this here is recoded using which() and therefore not CC-BY-SA :)
#' (Also, it fills the first unmatcheds with NA and not with the first value)
#' Yes, I know that library(zoo) has na.locf, but zoo is GPL-2.
#'
#' @aliases .locf .locb
#'
#' @noRd
#' @examples
#' vec <- c(NA, NA, "A", "B", NA, NA, NA, "C", NA, "D", NA, NA, NA)
#' .locb(vec)
#' .locf(vec)
#'
.locf <- function(vec) {
vec.isna <- !is.na(vec)
vec.isna.index <- cumsum(vec.isna)
# The construct below deals with the fact that vec[0] == integer(0) and not NA...
# Therefore we retrieve indexes to c(NA,vec) from c(0, which(vec.isna)) + 1
# (the +1 shifts all values so the 0s point to NA).
c(NA,vec)[c(0,which(vec.isna))[vec.isna.index+1]+1]
}
.locb <- function(vec) {
rvec <- rev(vec)
rev(.locf(rvec))
}
#' De-profile a high-resolution MS scan in profile mode.
#'
#' The \code{deprofile} functions convert profile-mode high-resolution input data to "centroid"-mode
#' data amenable to i.e. centWave. This is done using full-width, half-height algorithm, spline
#' algorithm or local maximum method.
#'
#' The \code{deprofile.fwhm} method is basically an R-semantic version of the "Exact Mass" m/z deprofiler
#' from MZmine. It takes the center between the m/z values at half-maximum intensity for the exact peak mass.
#' The logic is stolen verbatim from the Java MZmine algorithm, but it has been rewritten to use the fast
#' R vector operations instead of loops wherever possible. It's slower than the Java implementation, but
#' still decently fast IMO. Using matrices instead of the data frame would be more memory-efficient
#' and also faster, probably.
#'
#' The \code{deprofile.localMax} method uses local maxima and is probably the same used by e.g. Xcalibur.
#' For well-formed peaks, "deprofile.fwhm" gives more accurate mass results; for some applications,
#' \code{deprofile.localMax} might be better (e.g. for fine isotopic structure peaks which are
#' not separated by a valley and also not at half maximum.) For MS2 peaks, which have no isotopes,
#' \code{deprofile.fwhm} is probably the better choice generally.
#'
#' \code{deprofile.spline} calculates the mass using a cubic spline, as the HiRes peak detection
#' in OpenMS does.
#'
#' The word "centroid" is used for convenience to denote not-profile-mode data.
#' The data points are NOT mathematical centroids; we would like to have a better word for it.
#'
#' The \code{noise} parameter was only included for completeness, I personally don't use it.
#'
#' \code{deprofile.fwhm} and \code{deprofile.localMax} are the workhorses;
#' \code{deprofile.scan} takes a 2-column scan as input.
#' \code{deprofile} dispatches the call to the appropriate worker method.
#'
#' @note Known limitations: If the absolute leftmost stick or the absolute rightmost stick in
#' a scan are maxima, they will be discarded! However, I don't think this will
#' ever present a practical problem.
#'
#' @aliases deprofile.scan deprofile.fwhm deprofile.localMax deprofile.spline
#' @usage deprofile.scan(scan, noise = NA, method = "deprofile.fwhm",
#' colnames = TRUE, ...)
#'
#' deprofile(df, noise, method, ...)
#'
#' deprofile.fwhm(df, noise = NA, cut = 0.5)
#'
#' deprofile.localMax(df, noise = NA)
#'
#' deprofile.spline(df, noise=NA, minPts = 5, step = 0.00001)
#' @param scan A matrix with 2 columns for m/z and intensity; from profile-mode high-resolution data. Corresponds
#' to the spectra obtained with xcms::getScan or mzR::peaks.
#' @param noise The noise cutoff. A peak is not included if the maximum stick intensity of the peak
#' is below the noise cutoff.
#' @param method "deprofile.fwhm" for full-width half-maximum or "deprofile.localMax" for
#' local maximum.
#' @param colnames For deprofile.scan: return matrix with column names (xcms-style,
#' \code{TRUE}, default) or plain (mzR-style, \code{FALSE}).
#' @param df A dataframe with at least the columns \code{mz} and \code{int} to perform deprofiling on.
#' @param ... Arguments to the workhorse functions \code{deprofile.fwhm} etc.
#' @param cut A parameter for \code{deprofile.fwhm} indicating where the peak flanks should be taken. Standard is 0.5
#' (as the algorithm name says, at half maximum.) Setting \code{cut = 0.75} would instead determine the peak
#' width at 3/4 maximum, which might give a better accuracy for merged peaks, but could be less accurate
#' if too few data points are present.
#' @param minPts The minimal points count in a peak to build a spline; for peaks with less
#' points the local maximum will be used instead. Note: The minimum value
#' is 4!
#' @param step The interpolation step for the calculated spline, which limits the maximum
#' precision which can be achieved.
#' @return \code{deprofile.scan}: a matrix with 2 columns for m/z and intensity
#'
#' @examples
#' \dontrun{
#' mzrFile <- openMSfile("myfile.mzML")
#' acqNo <- xraw@@acquisitionNum[[50]]
#' scan.mzML.profile <- mzR::peaks(mzrFile, acqNo)
#' scan.mzML <- deprofile.scan(scan.mzML.profile)
#' close(mzrFile)
#' }
#'
#' @author Michael Stravs, Eawag <michael.stravs@@eawag.ch>
#' @references
#' mzMine source code \href{http://sourceforge.net/svn/?group_id=139835}{http://sourceforge.net/svn/?group_id=139835}
#' @export
deprofile <- function(df, noise, method, ...)
{
return(do.call(method, list(df, noise, ...)))
}
#' @export
deprofile.scan <- function(scan, noise = NA, method="deprofile.fwhm", colnames = TRUE, ...)
{
# Format the input
df <- as.data.frame(scan)
colnames(df) <- c("mz", "int")
# Call the actual workhorse
peaklist <- deprofile(df, noise, method, ...)
# return the centroided peaklist
peaklist.m <- as.matrix(peaklist[,c("mz", "int")])
if(colnames)
colnames(peaklist.m) <- c("mz", "intensity")
else
colnames(peaklist.m) <- NULL
return(peaklist.m)
}
#' @export
deprofile.fwhm <- function(df, noise=NA, cut=0.5)
{
# split sticks into groups according to how MzMine does it:
# a new group starts at zeroes and at new ascending points
df$groupmax <- NA
rows <- nrow(df)
df <- within(df,
{
# identify local maxima
groupmax[which(diff(sign(diff(df$int)))<0) + 1] <- which(diff(sign(diff(df$int)))<0) + 1
# make forward-filled and backward-filled list for which was the last maximum.
# This assigns the sticks to groups.
groupmax_f <- .locf(groupmax)
groupmax_b <- .locb(groupmax)
# take backward-filled group as default
# and forward-filled group where the peak was ascending
groupmax_b[which(diff(df$int)<0)+1 ] <- groupmax_f[which(diff(df$int) <0)+1]
# eliminate zeroes
groupmax_b[which(df$int==0)]<-NA
# add "next intensities" and "next m/z" as well as "index" (n)
n <- 1:rows
int1 <- c(df$int[-1],0)
mz1 <- c(df$mz[-1],0)
# delete all the intensity+1 values from points which are last-in-group and therefore have int1 from next group!
int1[which(!is.na(groupmax))-1] <- 0
# find maximal intensity point for each peak member
maxint <- df[groupmax_b, "int"]
hm <- maxint * cut
up <- ifelse( (df$int <= hm) & (int1 >= hm) & (n < groupmax_b), groupmax_b, NA)
down <- ifelse( (df$int >= hm) & (int1 <= hm) & (n > groupmax_b), groupmax_b, NA)
})
# Compile finished peak list
peaklist <- df[which(!is.na(df$groupmax)),]
# Noise parameter:
if(!is.na(noise))
peaklist <- peaklist[peaklist$maxint > noise,]
# Find which peaks might have a FWHM value to substitue for the maxint mz value
# We isolate the peaklists for left-hand and for right-hand FWHM peak.
# If any straight line is found, the rightmost of the left points and the leftmost of the right points is used.
peaklist.left <- df[which(!is.na(df$up) & !duplicated(df$up, fromLast=TRUE)),]
peaklist.right <- df[which(!is.na(df$down) & !duplicated(df$down)),]
# calculate the slopes and the corresponding m/z value at half maximum
peaklist.left$slope <- (peaklist.left$int1 - peaklist.left$int) / (peaklist.left$mz1 - peaklist.left$mz)
peaklist.right$slope <- (peaklist.right$int1 - peaklist.right$int) / (peaklist.right$mz1 - peaklist.right$mz)
peaklist.left$mzleft <- peaklist.left$mz + (peaklist.left$hm - peaklist.left$int) / peaklist.left$slope
peaklist.right$mzright <- peaklist.right$mz + (peaklist.right$hm - peaklist.right$int) / peaklist.right$slope
# add the two values to the full-peaklist where they exist
peaklist <- merge(peaklist, peaklist.left[,c("up", "mzleft")], by.x="groupmax", by.y="up", all.x=TRUE, suffix=c("", ".left"))
peaklist <- merge(peaklist, peaklist.right[,c("down", "mzright")], by.x="groupmax", by.y="down", all.x=TRUE, suffix=c("", ".right"))
# Find which entries have both a left and a right end,
# and calculate the center mass for them.
peaklist.indexMzhm <- which(!is.na(peaklist$mzleft) & !is.na(peaklist$mzright))
peaklist[peaklist.indexMzhm, "mz"] <- (peaklist[peaklist.indexMzhm, "mzleft"] + peaklist[peaklist.indexMzhm, "mzright"]) / 2
return(peaklist)
}
#' @export
deprofile.localMax <- function(df, noise=NA)
{
# split sticks into groups:
# a new group starts at zeroes and at new ascending points
df$groupmax <- NA
rows <- nrow(df)
df$groupmax[which(diff(sign(diff(df$int)))<0) + 1] <- which(diff(sign(diff(df$int)))<0) + 1
peaklist <- df[which(!is.na(df$groupmax)),]
# Noise parameter:
if(!is.na(noise))
peaklist <- peaklist[peaklist$int > noise,]
# And that's it.
return(peaklist)
}
# This spline thing will be very slow :)
#' @export
deprofile.spline <- function(df, noise=NA, minPts = 5, step= 0.00001)
{
df$groupmax <- NA
rows <- nrow(df)
# Group the peaks like the FWHM routine
df <- within(df,
{
# identify local maxima
groupmax[which(diff(sign(diff(df$int)))<0) + 1] <- which(diff(sign(diff(df$int)))<0) + 1
# make forward-filled and backward-filled list for which was the last maximum.
# This assigns the sticks to groups.
groupmax_f <- .locf(groupmax)
groupmax_b <- .locb(groupmax)
# take backward-filled group as default
# and forward-filled group where the peak was ascending
groupmax_b[which(diff(df$int)<0)+1 ] <- groupmax_f[which(diff(df$int) <0)+1]
# eliminate zeroes
groupmax_b[which(df$int==0)]<-NA
})
groups <- na.omit(df$groupmax)
peaklist <- t(sapply(groups, function(group)
{
pk <- df[which(df$groupmax_b == group),]
# if there are not enough points, return the local maximum
if(nrow(pk) < minPts)
return(as.matrix(pk[which(pk$groupmax == group),c("mz", "int")]))
# fit a spline
spl <- smooth.spline(pk$mz, pk$int)
# predict in small steps
pred <- seq(from=min(pk$mz), to=max(pk$mz), by=step)
curve <- predict(spl, x=pred)
# find top and return it as peak
top <- which.max(curve$y)
return(as.matrix(c(curve$x[[top]], curve$y[[top]])))
}))
colnames(peaklist) <- c("mz", "int")
peaklist[,"mz"] <- unlist(peaklist[,"mz"])
peaklist[,"int"] <- unlist(peaklist[,"int"])
return(peaklist)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.