R/utils.R

Defines functions .isREMProductOrStop .isREMParcelOrStop .isRSetOrStop .isGROrStop .toM .toBeta .decodeSymbol .decodeEntrez .showQCSummary .showPredictionSummary .showCpGcountbyChr .showREMPinfo .showSampleID .showGeneStats .showREStats .showTrainingStats .showREMParceInfo .printMsgArray .initiateAH .liftOver_Hg38toHg19 .liftOver_Hg19toHg38 .webDownload .changeColNames .oneWayFlank .twoWayFlank .guessDataType .guessArrayType .aggregateREMP .iblkrow_dup .iblkrow .bploadLibraryQuiet .forwardSlashPath .timeTrace

## Internal utility functions:

.timeTrace <- function(oldT, indent = "  ") {
  currenT <- Sys.time()
  return(list(
    t = currenT,
    t_text = paste0(indent, "(", round(as.numeric(currenT - oldT, units = "secs"), 0), " sec.)")
  ))
}

.forwardSlashPath <- function(path) {
  gsub("\\\\", "/", path)
}

# Assign the pacakge to workers and suppress the loading messsage!
.bploadLibraryQuiet <- function(libraryList, be) {
  noreturn <- BiocParallel::bplapply(seq_len(BiocParallel::bpnworkers(be)), function(i, libraryList) {
    suppressPackageStartupMessages(lapply(libraryList, library, character.only = TRUE))
  }, BPPARAM = be, libraryList = libraryList)
}

.iblkrow <- function(M, chunks) {
  i <- 1
  uni_row <- nrow(M)
  it <- idiv(uni_row, chunks = chunks)

  nextEl <- function() {
    if (i == uni_row + 1) {
      return(NULL)
    }
    n <- nextElem(it)
    r <- seq(i, length = n)
    i <<- i + n
    M[r, , drop = FALSE]
  }
  nextEl
}

.iblkrow_dup <- function(M, chunks, index_col_name) {
  i <- 1
  ind <- which(colnames(M) == index_col_name)
  index <- M[, ind]
  unique_index <- unique(index)
  unique_length <- length(unique_index)

  it <- idiv(unique_length, chunks = chunks)

  nextEl <- function() {
    if (i == unique_length + 1) {
      return(NULL)
    }
    n <- nextElem(it)
    r <- seq(i, length = n)
    i <<- i + n
    M[index %in% unique_index[r], , drop = FALSE]
  }
  nextEl
}

.aggregateREMP <- function(dat, index_col_name) {
  eval(parse(text = paste0("aggregate(.~", index_col_name, ", dat, mean, na.rm = TRUE, na.action = na.pass)")))
}

.guessArrayType <- function(methyDat) {
  nProbes <- nrow(methyDat)
  if (nProbes <= remp_options(".default.27k.total.probes")) {
    return("27k")
  }
  if (nProbes > remp_options(".default.27k.total.probes") &
    nProbes <= remp_options(".default.450k.total.probes")) {
    return("450k")
  }
  if (nProbes > remp_options(".default.450k.total.probes") &
    nProbes <= remp_options(".default.epic.total.probes")) {
    return("EPIC")
  }
  if (nProbes > remp_options(".default.epic.total.probes")) {
    return("Sequencing")
  }
}

.guessDataType <- function(methyDat) {
  methyDat_sample <- methyDat[sample(seq_len(nrow(methyDat)), min(5000, nrow(methyDat))),
    sample(seq_len(ncol(methyDat)), min(5, ncol(methyDat))),
    drop = FALSE
  ]
  rng <- range(methyDat_sample, na.rm = TRUE)
  if (rng[1] >= 0 & rng[2] <= 1 |
    sum(methyDat_sample < 0 | methyDat_sample > 1, na.rm = TRUE) <
      nrow(methyDat_sample) * ncol(methyDat_sample) * 0.01) {
    return("beta")
  } else if (rng[1] < 0) {
    return("M")
  } else if (rng[1] == 0 & rng[2] == 100) {
    return("percentage")
  } else {
    return("unknown")
  }
}

.twoWayFlank <- function(object.GR, width) {
  .isGROrStop(object.GR)
  start(object.GR) <- start(object.GR) - width
  end(object.GR) <- end(object.GR) + width
  return(object.GR)
}

.oneWayFlank <- function(object.GR, width, start = TRUE) {
  .isGROrStop(object.GR)
  if (any(runValue(strand(object.GR)) == "*")) {
    stop("Strand information must not be missing.")
  }
  forward_ind <- strand(object.GR) == "+"
  reverse_ind <- strand(object.GR) == "-"

  if (start) {
    start(object.GR[forward_ind]) <- start(object.GR[forward_ind]) - width
    end(object.GR[reverse_ind]) <- end(object.GR[reverse_ind]) + width
  } else {
    end(object.GR[forward_ind]) <- end(object.GR[forward_ind]) + width
    start(object.GR[reverse_ind]) <- start(object.GR[reverse_ind]) - width
  }
  return(object.GR)
}

.changeColNames <- function(DForGR, oldnames, newnames) {
  if ("DataFrame" %in% is(DForGR)) {
    cnames <- colnames(DForGR)
    colnames(DForGR)[cnames %in% oldnames] <- newnames
    return(DForGR)
  }
  if ("GRanges" %in% is(DForGR)) {
    cnames <- colnames(mcols(DForGR))
    colnames(mcols(DForGR))[cnames %in% oldnames] <- newnames
    return(DForGR)
  }
}

.webDownload <- function(url, tag, col_types = NULL, verbose = FALSE)
{
  tempfilenames <- list.files(tempdir())
  which.tag.file <- grep(tag, tempfilenames)
  if (length(which.tag.file) == 0) {
    temp <- tempfile(pattern = tag) # Make an identifiable ext to avoid repeated download
    if(verbose) message("    Downloading file...")
    download.file(url, temp, quiet = TRUE)
  } else {
    if(verbose) message("    File existed!")
    temp <- file.path(tempdir(), tempfilenames[which.tag.file])
  }
  if(verbose) message("    Unzipping and loading file...")
  downloadedFile <- readr::read_delim(gzfile(temp), col_names = FALSE, delim = "\t", col_types = col_types)
  return(downloadedFile)
}

.liftOver_Hg19toHg38 <- function(ILMN.GR, m = NULL, verbose = FALSE) {
  if(verbose) message(m)
  ah <- .initiateAH()
  if(is.null(ah)) stop("AnnotationHub is currently not accessible. Please try again later.")
  ch <- suppressMessages(ah[[remp_options(".default.AH.hg19ToHg38.over.chain")]])
  ILMN.GR <- rtracklayer::liftOver(ILMN.GR, ch)
  ILMN.GR <- unlist(ILMN.GR)
  return(ILMN.GR)
}

.liftOver_Hg38toHg19 <- function(ILMN.GR, m = NULL, verbose = FALSE) {
  if(verbose) message(m)
  ah <- .initiateAH()
  if(is.null(ah)) stop("AnnotationHub is currently not accessible. Please try again later.")
  ch <- suppressMessages(ah[[remp_options(".default.AH.hg38ToHg19.over.chain")]])
  ILMN.GR <- rtracklayer::liftOver(ILMN.GR, ch)
  ILMN.GR <- unlist(ILMN.GR)
  return(ILMN.GR)
}

.initiateAH <- function()
{
  permission <- file.access(AnnotationHub::getAnnotationHubOption("CACHE"), 2)
  
  if (permission != 0) {
      message(
        AnnotationHub::getAnnotationHubOption("CACHE"),
        " is not writable, using temporal directory ",
        .forwardSlashPath(tempdir()), " instead."
      )
    AnnotationHub::setAnnotationHubOption("CACHE", file.path(tempdir(), ".AnnotationHub"))
  }
  ah <- tryCatch({
    suppressMessages(AnnotationHub::AnnotationHub())
    # stop("")
  }, error = function(e) {
    return(NULL)
  })
  return(ah)
}

#### Message display functions

.printMsgArray <- function(msg, printType) {
  if (printType == "message") for (m in msg) message(m)
  if (printType == "cat") for (m in msg) cat(m, "\n")
}

.showREMParceInfo <- function(object) {
  info <- object@REMParcelInfo
  cat("REMParcel object\n")
  cat("RE type:", info[["REtype"]], "\n")
  cat("Genome build:", info[["genome"]], "\n")
  cat("Illumina platform:", info[["platform"]], "\n")
  cat("Valid (max)", paste0(info[["REtype"]], "-CpG"), "flanking window size:", info[["max.win"]], "\n")
  cat("Number of RE:", length(object@RE), "\n")
  cat("Number of", paste0(info[["REtype"]], "-CpG:"), length(object@RECpG), "\n")
}

.showTrainingStats <- function(REStats, REtype, printType, indent) {
  if (!isEmpty(REStats)) {
    p <- rep(NA, 2)

    p[1] <- paste0(
      indent, REStats[1, 1], " profiled ",
      REtype, " are used for model training."
    )
    p[2] <- paste0(
      indent, REStats[1, 2],
      " ", REtype, "-CpGs that have at least 2 neighboring profiled CpGs are used for model training."
    )
  } else {
    p <- "N/A"
  }
  .printMsgArray(p, printType)
}

.showREStats <- function(REStats, REtype, printType, indent, notAggregated) {
  if (!isEmpty(REStats)) {
    p <- paste0(indent, "The data cover ", REStats[1, 3], " ", REtype)
    if (notAggregated) p <- paste0(p, " (", REStats[1, 4], " ", REtype, "-CpG).")
  } else {
    p <- "N/A"
  }
  .printMsgArray(p, printType)
}

.showGeneStats <- function(GeneStats, REtype, printType, indent) {
  if (!isEmpty(GeneStats)) {
    p <- rep(NA, 4)

    p[1] <- paste0(indent, "Gene coverage by ", REtype, " (out of total # of RefSeq genes):")
    p[2] <- paste0(
      indent, indent, GeneStats[2, 3],
      " (", round(GeneStats[2, 3] / GeneStats[1, 3] * 100, 2), "%) total genes;"
    )
    p[3] <- paste0(
      indent, indent, GeneStats[2, 1],
      " (", round(GeneStats[2, 1] / GeneStats[1, 1] * 100, 2), "%) protein-coding genes;"
    )
    p[4] <- paste0(
      indent, indent, GeneStats[2, 2],
      " (", round(GeneStats[2, 2] / GeneStats[1, 2] * 100, 2), "%) non-coding RNA genes."
    )
  } else {
    p <- "N/A"
  }
  .printMsgArray(p, printType)
}

.showSampleID <- function(object, indent) {
  x <- object@sampleID
  cat("Number of sample(s):", length(x), "\n")
  cat("Sample ID:")
  if (length(x) > 5) {
    x <- x[seq_len(5)]
    cat(indent, paste0(x, collapse = ", "), " ...\n")
  } else {
    cat(indent, paste0(x, collapse = ", "), "\n")
  }
}

.showREMPinfo <- function(object) {
  info <- object@REMPInfo
  cat("RE type:", info[["REtype"]], "\n")
  cat("Genome build:", info[["genome"]], "\n")
  cat("Methylation profiling platform:", info[["platform"]], "\n")
  cat("Flanking window size:", info[["win"]], "\n")
  cat("Prediction model:", info[["predictModel"]], "\n")
  cat("QC model:", info[["QCModel"]], "\n")
  if (grepl("Random Forest", info[["predictModel"]])) {
    cat("Seed:", metadata(object)$Seed, "\n")
  }
  restats <- metadata(object)$REStats
  if (!isEmpty(restats)) {
    if (grepl("aggregated", info[["REtype"]])) {
      cat("Covered", restats[1, 3], info[["REtype"]], "\n")
    } else {
      cat(
        "Covered", restats[1, 4], "CpG sites in",
        restats[1, 3], info[["REtype"]], "\n"
      )
    }
  }
}

.showCpGcountbyChr <- function(object) {
  info <- object@REMPInfo
  if (grepl("aggregated", info[["REtype"]])) {
    cat("Number of", info[["REtype"]], "by chromosome:")
  } else {
    cat("Number of", paste0(info[["REtype"]], "-CpGs"), "by chromosome:")
  }
  chr <- table(as.character(seqnames(rowRanges(object))))
  chr.name <- names(chr)
  chr.name[chr.name == "chrX"] <- "chr23"
  chr.name[chr.name == "chrY"] <- "chr24"
  chr.num <- as.numeric(substring(chr.name, 4, 5))
  chr <- chr[order(chr.num)]

  for (i in seq_len(ceiling(length(chr) / 8)))
  {
    print(chr[((i - 1) * 8 + 1):min((8 * i), length(chr))])
  }
}

.showPredictionSummary <- function(object) {
  options(digits = 10)
  Bvalue <- assays(object)[["rempB"]]
  cat("Distribution of methylation value (beta value):", "\n")
  print(summary(as.numeric(Bvalue)))
  options(digits = 7)
}

.showQCSummary <- function(object) {
  options(digits = 10)
  QC <- assays(object)[["rempQC"]]
  cat("Distribution of reliability score (lower score = higher reliability):", "\n")
  print(summary(as.numeric(QC)))
  options(digits = 7)
}



## Convert refgene index to gene symbol or entrez id

.decodeEntrez <- function(x, refgene) {
  paste0(unique(refgene[x, "EntrezGene"]), collapse = "|")
}

.decodeSymbol <- function(x, refgene) {
  paste0(unique(refgene[x, "GeneSymbol"]), collapse = "|")
}



## Methylation beta <--> M value conversion

.toBeta <- function(M) {
  2^(M) / (1 + 2^(M))
}

.toM <- function(beta) {
  log2(beta / (1 - beta))
}



## Class check

.isGROrStop <- function(object) {
  if (!"GRanges" %in% is(object)) {
    stop(sprintf(
      "object is of class '%s', but needs to be of class 'GRanges' (see object definition in package 'GenomicRanges')",
      class(object)
    ))
  }
}

.isRSetOrStop <- function(object) {
  if (!is(object, "RatioSet") && !is(object, "GenomicRatioSet")) {
    stop(sprintf(
      "object is of class '%s', but needs to be of class '[Genomic]RatioSet' (see object definition in package 'minfi')",
      class(object)
    ))
  }
}

.isREMParcelOrStop <- function(object) {
  if (!is(object, "REMParcel")) {
    stop(sprintf(
      "object is of class '%s', but needs to be of class 'REMParcel'.",
      class(object)
    ))
  }
}

.isREMProductOrStop <- function(object) {
  if (!is(object, "REMProduct")) {
    stop(sprintf(
      "object is of class '%s', but needs to be of class 'REMProduct'.",
      class(object)
    ))
  }
}

Try the REMP package in your browser

Any scripts or data that you put into this service are public.

REMP documentation built on Nov. 8, 2020, 8:05 p.m.