R/rempTemplate.R

Defines functions rempTemplate

Documented in rempTemplate

#' @title Prepare data template for REMP
#'
#' @description
#' \code{rempTemplate} is used to build a set of data templates for prediction. The data templates include
#' RE-CpGs and their methylation data for model training, neighboring CpGs of RE-CpGs and their
#' methylation data for model prediction, and other necessary information about the prediction.
#' This function is useful when one needs to experiment different tunning parameters so that these pre-built
#' data templates can be re-used and substaintially improve efficiency.
#'
#' @param methyDat A \code{\link{RatioSet}}, \code{\link{GenomicRatioSet}}, \code{\link{DataFrame}},
#' \code{data.table}, \code{data.frame}, or \code{matrix} of Illumina BeadChip methylation data
#' (450k or EPIC array) or Illumina methylation percentage estimates by sequencing.
#' @param Seq.GR A \code{\link{GRanges}} object containing genomic locations of the CpGs profiled by sequencing
#' platforms. This parameter should not be \code{NULL} if the input methylation data \code{methyDat} are
#' obtained by sequencing. Note that the genomic location can be in either hg19 or hg38 build, but must be consistent
#' with the build as \code{parcel}. See details in \code{\link{initREMP}}.
#' @param parcel An \code{\link{REMParcel}} object containing necessary data to carry out the
#' prediction. If \code{NULL}, the function will search the \code{.rds} data file in \code{work.dir}
#' exported by \code{\link{initREMP}} (with \code{export = TRUE}) or \code{\link{saveParcel}}.
#' @param win An integer specifying window size to confine the upstream and downstream flanking
#' region centered on the predicted CpG in RE for prediction. Default = \code{1000}.
#' @param verbose Logical parameter. Should the function be verbose?
#'
#' @return A \code{template} object containing a \code{\link{GRanges}} object of neifhboring CpGs of RE-CpGs
#' to be predicted (\code{$NBCpG_GR}) and their methylation dataset matrix (\code{$NBCpG_methyDat});
#' a \code{\link{GRanges}} object of RE-CpGs for model training (\code{$RECpG_GR}) and their methylation
#' dataset matrix (\code{$RECpG_methyDat}); \code{\link{GRanges}} objects of RefSeq Gene database (\code{$refgene})
#' and RE (\code{$RE}) that are extracted from the \code{parcel} input; a string of RE type (\code{$REtype})
#' and a string of methylation platform (\code{$arrayType}). Note: the subset operator \code{[]} is supported.
#'
#' @examples
#' if (!exists("GM12878_450k"))
#'   GM12878_450k <- getGM12878("450k")
#' if (!exists("remparcel")) {
#'   data(Alu.hg19.demo)
#'   remparcel <- initREMP(arrayType = "450k",
#'                         REtype = "Alu",
#'                         annotation.source = "AH",
#'                         genome = "hg19",
#'                         RE = Alu.hg19.demo,
#'                         ncore = 1,
#'                         verbose = TRUE)
#' }
#' 
#' template <- rempTemplate(GM12878_450k, 
#'                          parcel = remparcel, 
#'                          win = 1000, 
#'                          verbose = TRUE)
#' template
#' 
#' ## To make a subset
#' template[1]
#' 
#' @export
rempTemplate <- function(methyDat = NULL, 
                         Seq.GR = NULL, 
                         parcel = NULL, 
                         win = 1000, 
                         verbose = FALSE) {
  if (is.null(methyDat)) stop("Methylation dataset (methyDat) is missing.")
  if (!is.null(Seq.GR)) {
    .isGROrStop(Seq.GR)
    names(Seq.GR) <- NULL
  }
  
  if (is.null(parcel)) stop("REMParcel object is missing.")
  .isREMParcelOrStop(parcel)

  if (win > remp_options(".default.max.flankWindow")) {
    stop(
      "Flanking window size cannot be greater than ", remp_options(".default.max.flankWindow"),
      ". Please see ?remp_options for details."
    )
  }

  currenT <- Sys.time()

  ## Groom methylation data
  methyDat <- grooMethy(methyDat, Seq.GR, verbose = verbose)
  methyDat <- minfi::getM(methyDat)

  ## Get parcel information
  arrayType <- getParcelInfo(parcel)$platform
  REtype <- getParcelInfo(parcel)$REtype
  genome <- getParcelInfo(parcel)$genome
  RE_refGene.original <- getRE(parcel)
  RE_CpG <- getRECpG(parcel)
  ILMN <- getILMN(parcel)
  RE_CpG_ILMN <- getILMN(parcel, REonly = TRUE)

  ## Make indicator of genomic regions
  RE_refGene <- .toIndicator(RE_refGene.original)

  ## RE.CpG : Add CpG density and rename
  ## identical(runValue(RE_refGene$Index), runValue(RE_CpG$Index))
  RE_refGene$N <- runLength(RE_CpG$Index)
  RE_refGene$Length <- width(RE_refGene)
  RE_refGene$CpG.density <- RE_refGene$N / RE_refGene$Length # density of CpG within RE sequence

  merge_RE_CpG_meta <- mcols(RE_refGene)[base::match(
    as.character(RE_CpG$Index),
    as.character(RE_refGene$Index)), ]
  merge_RE_CpG_meta$CpG.ID <- as.character(granges(RE_CpG))
  mcols(RE_CpG) <- setNames(merge_RE_CpG_meta, paste0("RE.", colnames(merge_RE_CpG_meta)))
  # all(as.character(granges(RE_CpG)) == RE_CpG$RE.CpG.ID)

  ## Find valid CpG sites with methylation profiled
  commonCpGIndex <- intersect(rownames(methyDat), ILMN$Index)

  ## Trim down methyDat:
  methyDat <- methyDat[base::match(commonCpGIndex, rownames(methyDat)), , drop = FALSE]

  ## ILMN : create pointer and rename. Note: Different Methy data will
  ## result in different size of this data!
  ILMN <- ILMN[base::match(commonCpGIndex, ILMN$Index), ]
  mcols(ILMN) <- setNames(mcols(ILMN), paste0("ILMN.", colnames(mcols(ILMN))))
  ILMN$Methy.ptr <- seq_len(length(ILMN))
  # identical(ILMN$ILMN.Index, rownames(methyDat))

  ## RE_CpG_ILMN : Compute total number of RE covered by ILMN. Note:
  ## Different Methy data will result in different size of this data.
  RE_CpG_ILMN <- RE_CpG_ILMN[RE_CpG_ILMN$Index %in% rownames(methyDat), ]
  RE_CpG_ILMN <- unique(RE_CpG_ILMN)

  RE_CpG_ILMN_DATA <- methyDat[base::match(RE_CpG_ILMN$Index, rownames(methyDat)), , drop = FALSE]

  ############################################################# Find RE_CpG's neighboring CpG
  message("Processing ", REtype, " with window +/- ", win, " base pair ...")

  RE_CpG_flanking <- .twoWayFlank(granges(RE_CpG), win)
  HITS <- findOverlaps(RE_CpG_flanking, ILMN, ignore.strand = TRUE)

  ## Part 1: RE-CpG
  RE_NeibCpG <- RE_CpG[queryHits(HITS), ]
  ## Total RE that can be predicted (contains neighboring CpGs within given window)

  ## Part 2: Neighboring ILMN CpG
  RE_NeibCpG_ILMN <- ILMN[subjectHits(HITS), ]
  RE_NeibCpG_ILMN <- DataFrame(
    RE_NeibCpG_ILMN.GR = granges(RE_NeibCpG_ILMN),
    mcols(RE_NeibCpG_ILMN)
  )
  mcols(RE_NeibCpG) <- DataFrame(mcols(RE_NeibCpG), RE_NeibCpG_ILMN)
  # identical(as.character(granges(RE_NeibCpG)), RE_NeibCpG$RE.CpG.ID)

  ## Remove singleton (RE-CpGs with only one neighboring ILMN CpG)
  RE_NeibCpG$distance <- abs(start(RE_NeibCpG$RE_NeibCpG_ILMN.GR) - start(RE_NeibCpG))
  RE_NeibCpG <- RE_NeibCpG[RE_NeibCpG$distance > 1, ]

  ## Make distance bucket
  RE_NeibCpG$distance_cat <- cut(RE_NeibCpG$distance, seq(0, win, win / 4),
    labels = FALSE
  )
  RE_NeibCpG$distance_cat[is.na(RE_NeibCpG$distance_cat)] <- 4

  ## Add core predictors.
  RE_NeibCpG <- RE_NeibCpG[order(RE_NeibCpG$RE.CpG.ID, RE_NeibCpG$distance), ]
  RE_NeibCpG.DF <- mcols(RE_NeibCpG)[, c("RE.CpG.ID", "Methy.ptr", "distance")]

  distance_agg <- .aggregateNeib(
    distance ~ RE.CpG.ID, RE_NeibCpG.DF,
    function(x) c(length(x), mean(x), sd(x), x[1], x[2]),
    c(
      "RE.CpG.ID", "N.nbr", "distance.mean",
      "distance.std", "distance.min", "distance.min2"
    )
  )
  Methy_ptr_agg <- .aggregateNeib(
    Methy.ptr ~ RE.CpG.ID, RE_NeibCpG.DF,
    function(x) c(x[1], x[2]),
    c("RE.CpG.ID", "Methy.ptr.min", "Methy.ptr.min2")
  )

  Methy_ptr_distance_agg <- merge(distance_agg, Methy_ptr_agg, by = "RE.CpG.ID")

  RE_NeibCpG_meta <- mcols(RE_NeibCpG)
  mcols(RE_NeibCpG) <- cbind(
    RE_NeibCpG_meta,
    Methy_ptr_distance_agg[base::match(
      RE_NeibCpG_meta$RE.CpG.ID,
      Methy_ptr_distance_agg$RE.CpG.ID
    ), -1]
  )
  RE_NeibCpG <- RE_NeibCpG[order(RE_NeibCpG$RE.Index)]
  RE_NeibCpG <- RE_NeibCpG[RE_NeibCpG$N.nbr > 1, ] ## Remove singleton

  refgene_main <- getRefGene(parcel)
  RE_refGene.original <- getRE(parcel)

  res <- list(
    NBCpG_methyDat = DataFrame(methyDat), RECpG_methyDat = DataFrame(RE_CpG_ILMN_DATA),
    NBCpG_GR = RE_NeibCpG, RECpG_GR = RE_CpG_ILMN,
    refgene = getRefGene(parcel),
    RE = getRE(parcel),
    REtype = REtype,
    genome = genome,
    arrayType = arrayType
  )

  class(res) <- "template"

  message("Done.", .timeTrace(currenT)$t_text)

  return(res)
}

#' @export
"[.template" <- function(x, i) {
  x$NBCpG_methyDat <- x$NBCpG_methyDat[, i, drop = FALSE]
  x$RECpG_methyDat <- x$RECpG_methyDat[, i, drop = FALSE]
  x
}

Try the REMP package in your browser

Any scripts or data that you put into this service are public.

REMP documentation built on Nov. 8, 2020, 8:05 p.m.