Nothing
#' Jacobian for the estimation of the column scores
#'
#' @param beta vector of length p+1+1+(k-1): p row scores, 1 centering,
#' one normalization
#' and (k-1) orhtogonality lagrangian multipliers
#' @param X the nxp data matrix
#' @param reg a nx1 regressor matrix: outer product of rowScores and psis
#' @param thetas nxp matrix with the dispersion parameters
#' (converted to matrix for numeric reasons)
#' @param muMarg the nxp offset
#' @param k an integer, the dimension of the RC solution
#' @param p an integer, the number of taxa
#' @param n an integer, the number of samples
#' @param nLambda an integer, the number of restrictions
#' @param colWeights the weights used for the restrictions
#' @param cMatK the lower dimensions of the colScores
#' @param preFabMat a prefab matrix, (1+X/thetas)
#' @param Jac an empty Jacobian matrix
#' @param allowMissingness A boolean, are missing values present
#' @param naId The numeric index of the missing values in X
#'
#' @return A matrix of dimension p+1+1+(k-1) with evaluations of the Jacobian
NBjacobianCol = function(beta, X, reg, thetas,
muMarg, k, n, p, colWeights, nLambda,
cMatK, preFabMat, Jac, allowMissingness, naId) {
cMat = beta[seq_len(p)]
# Calculate the mean
mu = exp(reg %*% cMat) * muMarg
# The symmetric jacobian matrix. The
# upper part is filled first, then mirror
# image is taken for lower triangle
# dLag²/dr_{ik}dlambda_{1k}
Jac[seq_len(p), p + 2] = Jac[p + 2, seq_len(p)] = colWeights *
2 * cMat
if(allowMissingness){
preFabMat = 1 + correctXMissingness(X, mu, allowMissingness, naId)/thetas
}
# dLag²/dr_{ik}²
diag(Jac)[seq_len(p)] = -crossprod(preFabMat *
mu/(1 + mu/thetas)^2, reg^2) + 2 *
beta[p + 2] * colWeights
Jac
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.