Nothing
# Make CMD check happy
globalVariables(names=c("..level.."))
#' Correct for library-specific coverage biases
#'
#' Takes as input coverage data and a mapping file for GC content and
#' optionally replication timing. Will then normalize coverage data for
#' GC-bias. Plots the pre and post normalization GC profiles.
#'
#'
#' @param coverage.file Coverage file or coverage data parsed with the
#' \code{\link{readCoverageFile}} function.
#' @param interval.file File providing GC content for each exon in the coverage
#' files. First column in format CHR:START-END. Additional optional columns
#' provide gene symbols, mappability and replication timing. This file is
#' generated with the \code{\link{preprocessIntervals}} function.
#' @param output.file Optionally, write file with GC corrected coverage. Can be
#' read with the \code{\link{readCoverageFile}} function.
#' @param plot.bias Optionally, plot profiles of the pre-normalized and
#' post-normalized coverage. Provides a quick visual check of coverage bias.
#' @param plot.max.density By default, if the number of intervals in the
#' probe-set is > 50000, uses a kernel density estimate to plot the coverage
#' distribution. This uses the \code{stat_density} function from the ggplot2
#' package. Using this parameter, change the threshold at which density
#' estimation is applied. If the \code{plot.bias} parameter is set as
#' \code{FALSE}, this will be ignored.
#' @param output.qc.file Write miscellaneous coverage QC metrics to file.
#' @author Angad Singh, Markus Riester
#' @seealso \code{\link{preprocessIntervals}}
#' @examples
#'
#' normal.coverage.file <- system.file("extdata", "example_normal.txt",
#' package="PureCN")
#' interval.file <- system.file("extdata", "example_intervals.txt",
#' package="PureCN")
#' coverage <- correctCoverageBias(normal.coverage.file, interval.file)
#'
#' @export correctCoverageBias
#' @importFrom ggplot2 ggplot aes_string geom_point geom_line aes
#' xlab ylab theme element_text facet_wrap stat_density2d
#' scale_alpha_continuous scale_y_sqrt geom_abline
#' coord_trans
#' @importFrom gridExtra grid.arrange
#' @importFrom stats loess lm predict
#' @importFrom data.table fwrite
correctCoverageBias <- function(coverage.file, interval.file,
output.file = NULL, plot.bias = FALSE, plot.max.density = 50000,
output.qc.file = NULL) {
if (is.character(coverage.file)) {
raw <- readCoverageFile(coverage.file)
} else {
raw <- coverage.file
}
if (max(raw$average.coverage[raw$on.target], na.rm = TRUE) <= 0) {
.stopUserError("Provided coverage is zero, most likely due to a corrupt BAM file.")
}
raw <- .addGCData(raw, interval.file, verbose=FALSE)
ret <- .correctCoverageBiasLoess(raw)
if (plot.bias) {
gp1 <- .plotGcBias(raw, ret$coverage, ret$medDiploid, plot.max.density)
}
gc <- ret$coverage
ret <- .correctRepTimingBiasLinear(gc)
if (plot.bias) {
# reptiming available?
if (!is.null(ret$lmFit)) {
gp2 <- .plotRepBias(gc, ret$coverage, ret$lmFit, plot.max.density)
grid.arrange(gp1, gp2, nrow = 2)
} else {
print(gp1)
}
}
if (!is.null(output.file)) {
.writeCoverage(ret$coverage, output.file)
}
if (!is.null(output.qc.file)) {
.writeQCFile(raw, gc, ret$coverage, output.qc.file)
}
invisible(ret$coverage)
}
.MoM <- function(x, plot = FALSE) {
if (length(x) < 10) return(NA)
x <- median(x, na.rm = TRUE) / mean(x, na.rm = TRUE)
}
.writeQCFile <- function(raw, gc, final, output.qc.file) {
mom <- unlist(lapply(list(raw, gc, final), function(x) sapply(c(TRUE, FALSE), function(b)
.MoM(x[which(x$on.target == b)]$average.coverage))))
meanOn <- mean(raw[which(raw$on.target)]$average.coverage, na.rm = TRUE)
meanOff <- mean(raw[which(!raw$on.target)]$average.coverage, na.rm = TRUE)
meanDupOn <- mean(raw[which(raw$on.target)]$duplication.rate, na.rm = TRUE)
meanDupOff <- mean(raw[which(!raw$on.target)]$duplication.rate, na.rm = TRUE)
qc <- c(meanOn, meanOff, meanDupOn, meanDupOff, mom)
qc <- data.frame(matrix(qc, nrow=1))
colnames(qc)[1:2] <- c("mean.coverage.ontarget", "mean.coverage.offtarget")
colnames(qc)[3:4] <- c("mean.duplication.ontarget", "mean.duplication.offtarget")
colnames(qc)[5:10] <- paste0("mom.", c("raw", "raw", "post.gc", "post.gc",
"post.reptiming", "post.reptiming"),
".", rep(c("ontarget", "offtarget"),3))
fwrite(qc, file = output.qc.file, row.names = FALSE, quote = FALSE,
sep = " ")
}
.createCoverageGgplot <- function(raw, normalized, plot.max.density, x, log = FALSE) {
if (length(normalized) < plot.max.density) {
density <- "Low"
} else {
density <- "High"
}
raw$norm_status <- "Pre-normalized"
normalized$norm_status <- "Post-normalized"
ids <- c("coverage","average.coverage","gc_bias", "reptiming",
"norm_status", "on.target")
tumCov <- rbind(as.data.frame(raw)[, ids],
as.data.frame(normalized)[, ids])
tumCov <- tumCov[which(tumCov$average.coverage <
quantile(tumCov$average.coverage, 0.999, na.rm = TRUE)),]
if (sum(!tumCov$on.target)) {
tumCov <- tumCov[which(tumCov$on.target | tumCov$average.coverage <
quantile(tumCov$average.coverage[!tumCov$on.target], 0.99, na.rm=TRUE)),]
}
tumCov$on.target <- factor(ifelse(tumCov$on.target, "on-target", "off-target"),
levels = c("on-target", "off-target"))
tumCov$norm_status <- factor(tumCov$norm_status, levels = c("Pre-normalized","Post-normalized"))
if (log) tumCov$average.coverage <- log(tumCov$average.coverage)
gp <- ggplot(tumCov, aes_string(x = x, y = "average.coverage"))
if (density == "Low") {
gp <- gp + geom_point(color = "red", alpha = 0.2)
} else if (density == "High") {
gp <- gp + geom_point(color = "blue", alpha = 0.1) +
stat_density2d(aes(fill = ..level..), geom = "polygon") +
scale_alpha_continuous(limits = c(0.1, 0),
breaks = seq(0, 0.1, by = 0.025))
}
gp + ylab(paste0(if (log) "Log-" else "", "Coverage")) +
facet_wrap(~on.target + norm_status, ncol = 2, scales = "free_y")
}
.plotGcBias <- function(raw, normalized, medDiploid, plot.max.density) {
gp <- .createCoverageGgplot(raw, normalized, plot.max.density, "gc_bias")
plotMed <- medDiploid[,c("gcIndex","denom")]
colnames(plotMed) <- c("gcIndex","gcNum")
plotMed$norm_status <- "Pre-normalized"
medDiploid$norm_status <- "Post-normalized"
plotMed <- rbind(plotMed,medDiploid[,c("gcIndex","gcNum","norm_status")])
plotMed$norm_status <- factor(plotMed$norm_status,
levels = c("Pre-normalized","Post-normalized"))
plotMed$on.target <- factor("on-target", levels=c("on-target", "off-target"))
gp <- gp + geom_line(data = plotMed, aes_string(x = "gcIndex", y = "gcNum"), color = "blue") +
xlab("GC content")
gp
}
.plotRepBias <- function(raw, normalized, lmFit, plot.max.density) {
gp <- .createCoverageGgplot(raw, normalized, plot.max.density, "reptiming", log=TRUE) +
xlab("Replication Timing")
plotMed <- do.call(rbind, lapply(lmFit, function(x)
data.frame(rbind(x$before$coefficients, x$after$coefficients),
norm_status=c("Pre-normalized", "Post-normalized"),
on.target=x$on.target)))
colnames(plotMed)[1:2] <- c("intercept", "slope")
plotMed$norm_status <- factor(plotMed$norm_status,
levels = c("Pre-normalized","Post-normalized"))
plotMed$on.target <- factor(ifelse(plotMed$on.target, "on-target", "off-target"),
levels=c("on-target", "off-target"))
gp <- gp + geom_abline(data = plotMed,
aes_string(intercept = "intercept", slope = "slope"), color = "blue")
gp
}
#.correctDuplicationBiasLoess <- function(tumor) {
# # ALPHA code
# if (is.null(tumor$on.target)) tumor$on.target <- TRUE
# if (is.null(tumor$duplication.rate)) return(tumor)
# idx <- tumor$on.target
# fit <- loess(tumor$duplication.rate[idx]~tumor$average.coverage[idx])
# corFactor <- 1-predict(fit, tumor$average.coverage[idx])
# tumor$coverage[idx] <- tumor$coverage[idx] / corFactor
# tumor$counts[idx] <- tumor$counts[idx] / corFactor
# .addAverageCoverage(tumor)
#}
.correctRepTimingBiasLinear <- function(tumor) {
# ALPHA code
if (is.null(tumor$on.target)) tumor$on.target <- TRUE
if (is.null(tumor$reptiming) || sum(!is.na(tumor$reptiming))<100) {
return(list(coverage=tumor, lmFit=NULL))
}
doutlier <- 0.001
domain <- quantile(tumor$reptiming, probs = c(doutlier, 1 - doutlier), na.rm = TRUE)
lmFit <- list()
for (on.target in c(FALSE, TRUE)) {
# ignore problematic intervals (missing or outlier data)
idx <- tumor$on.target == on.target &
!is.na(tumor$reptiming) &
!is.na(tumor$average.coverage) &
tumor$average.coverage > 0 &
tumor$reptiming >= domain[1] &
tumor$reptiming <= domain[2]
if (!sum(idx)) next
fit <- lm(log(tumor$average.coverage[idx])~tumor$reptiming[idx])
corFactor <- exp(predict(fit)-mean(predict(fit)))
tumor$coverage[idx] <- tumor$coverage[idx] / corFactor
tumor$counts[idx] <- tumor$counts[idx] / corFactor
tumor <- .addAverageCoverage(tumor)
fitAfter <- lm(log(tumor$average.coverage[idx])~tumor$reptiming[idx])
lmFit[[length(lmFit) + 1]] <- list(before=fit, after=fitAfter, on.target=on.target)
}
list(coverage=tumor, lmFit=lmFit)
}
.correctCoverageBiasLoess <- function(tumor) {
if (is.null(tumor$on.target)) tumor$on.target <- TRUE
gc_bias <- tumor$gc_bias
for (on.target in c(FALSE, TRUE)) {
tumor$valid <- tumor$on.target == on.target
tumor$gc_bias <- gc_bias
tumor$valid[tumor$average.coverage <= 0 | tumor$gc_bias < 0] <- FALSE
if (!any(tumor$valid)) next
tumor$ideal <- TRUE
routlier <- 0.01
range <- quantile(tumor$average.coverage[tumor$valid], prob =
c(0, 1 - routlier), na.rm = TRUE)
doutlier <- 0.001
domain <- quantile(tumor$gc_bias[tumor$valid], prob = c(doutlier, 1 - doutlier),
na.rm = TRUE)
tumor$ideal[!tumor$valid |
( tumor$mappability < 1 & on.target ) |
tumor$average.coverage <= range[1] |
tumor$average.coverage > range[2] |
tumor$gc_bias < domain[1] |
tumor$gc_bias > domain[2]] <- FALSE
if (!any(tumor$ideal)) next
if (!on.target) {
widthR <- quantile(width(tumor[tumor$ideal]), prob=0.1)
tumor$ideal[width(tumor) < widthR] <- FALSE
}
rough <- loess(tumor$average.coverage[tumor$ideal] ~ tumor$gc_bias[tumor$ideal],
span = 0.03)
i <- seq(0, 1, by = 0.001)
final <- loess(predict(rough, i) ~ i, span = 0.3)
cor.gc <- predict(final, tumor$gc_bias[tumor$valid])
cor.gc.factor <- cor.gc/mean(tumor$average.coverage[tumor$ideal], na.rm=TRUE)
cor.gc.factor[cor.gc.factor<=0] <- NA
tumor$gc_bias <- as.integer(tumor$gc_bias*100)/100
pre <- by(tumor$average.coverage[tumor$ideal], tumor$gc_bias[tumor$ideal], median, na.rm=TRUE)
medDiploid <- as.data.frame(cbind(as.numeric(names(pre)),as.vector(pre)))
colnames(medDiploid) <- c("gcIndex","denom")
tumor$coverage[tumor$valid] <- (tumor$coverage[tumor$valid] / cor.gc.factor)
tumor$counts[tumor$valid] <- (tumor$counts[tumor$valid] / cor.gc.factor)
tumor <- .addAverageCoverage(tumor)
post <- by(tumor$average.coverage[tumor$ideal], tumor$gc_bias[tumor$ideal], median, na.rm=TRUE)
medDiploid$gcNum <- as.vector(post)
tumor$ideal <- NULL
tumor$valid <- NULL
}
list(coverage = tumor, medDiploid=medDiploid)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.