R/correctCoverageBias.R

Defines functions .correctCoverageBiasLoess .correctRepTimingBiasLinear .plotRepBias .plotGcBias .createCoverageGgplot .writeQCFile .MoM correctCoverageBias

Documented in correctCoverageBias

# Make CMD check happy
globalVariables(names=c("..level.."))

#' Correct for library-specific coverage biases
#' 
#' Takes as input coverage data and a mapping file for GC content and 
#' optionally replication timing. Will then normalize coverage data for 
#' GC-bias.  Plots the pre and post normalization GC profiles.
#' 
#' 
#' @param coverage.file Coverage file or coverage data parsed with the
#' \code{\link{readCoverageFile}} function.
#' @param interval.file File providing GC content for each exon in the coverage
#' files. First column in format CHR:START-END. Additional optional columns
#' provide gene symbols, mappability and replication timing. This file is
#' generated with the \code{\link{preprocessIntervals}} function.
#' @param output.file Optionally, write file with GC corrected coverage. Can be
#' read with the \code{\link{readCoverageFile}} function.
#' @param plot.bias Optionally, plot profiles of the pre-normalized and
#' post-normalized coverage. Provides a quick visual check of coverage bias.
#' @param plot.max.density By default, if the number of intervals in the
#' probe-set is > 50000, uses a kernel density estimate to plot the coverage
#' distribution. This uses the \code{stat_density} function from the ggplot2
#' package. Using this parameter, change the threshold at which density
#' estimation is applied. If the \code{plot.bias} parameter is set as
#' \code{FALSE}, this will be ignored.
#' @param output.qc.file Write miscellaneous coverage QC metrics to file.
#' @author Angad Singh, Markus Riester
#' @seealso \code{\link{preprocessIntervals}}
#' @examples
#' 
#' normal.coverage.file <- system.file("extdata", "example_normal.txt", 
#'     package="PureCN")
#' interval.file <- system.file("extdata", "example_intervals.txt", 
#'     package="PureCN")
#' coverage <- correctCoverageBias(normal.coverage.file, interval.file)
#' 
#' @export correctCoverageBias
#' @importFrom ggplot2 ggplot aes_string geom_point geom_line aes
#'             xlab ylab theme element_text facet_wrap stat_density2d
#'             scale_alpha_continuous scale_y_sqrt geom_abline
#'             coord_trans
#' @importFrom gridExtra grid.arrange
#' @importFrom stats loess lm predict
#' @importFrom data.table fwrite
correctCoverageBias <- function(coverage.file, interval.file,
output.file = NULL, plot.bias = FALSE, plot.max.density = 50000, 
output.qc.file = NULL) {

    if (is.character(coverage.file)) {
        raw  <- readCoverageFile(coverage.file)
    } else {
        raw <- coverage.file
    }    
    
    if (max(raw$average.coverage[raw$on.target], na.rm = TRUE) <= 0) {
        .stopUserError("Provided coverage is zero, most likely due to a corrupt BAM file.")
    }
    
    raw <- .addGCData(raw, interval.file, verbose=FALSE)
    ret <- .correctCoverageBiasLoess(raw)
    if (plot.bias) {
        gp1 <- .plotGcBias(raw, ret$coverage, ret$medDiploid, plot.max.density)
    }
    
    gc <- ret$coverage
    ret <- .correctRepTimingBiasLinear(gc)
    if (plot.bias) {
        # reptiming available?
        if (!is.null(ret$lmFit)) {
            gp2 <- .plotRepBias(gc, ret$coverage, ret$lmFit, plot.max.density)
            grid.arrange(gp1, gp2, nrow = 2)
        } else {
            print(gp1)    
        }    
    }
    if (!is.null(output.file)) {
        .writeCoverage(ret$coverage, output.file)
    }
    if (!is.null(output.qc.file)) {
        .writeQCFile(raw, gc, ret$coverage, output.qc.file)
    }
    invisible(ret$coverage)
}

.MoM <- function(x, plot = FALSE) {
    if (length(x) < 10) return(NA)
    x <- median(x, na.rm = TRUE) / mean(x, na.rm = TRUE)
}

.writeQCFile <- function(raw, gc, final, output.qc.file) {
    mom <- unlist(lapply(list(raw, gc, final), function(x) sapply(c(TRUE, FALSE), function(b) 
        .MoM(x[which(x$on.target == b)]$average.coverage))))

    meanOn     <- mean(raw[which(raw$on.target)]$average.coverage, na.rm = TRUE)
    meanOff    <- mean(raw[which(!raw$on.target)]$average.coverage, na.rm = TRUE)
    meanDupOn  <- mean(raw[which(raw$on.target)]$duplication.rate, na.rm = TRUE)
    meanDupOff <- mean(raw[which(!raw$on.target)]$duplication.rate, na.rm = TRUE)
    
    qc <- c(meanOn, meanOff, meanDupOn, meanDupOff, mom)

    qc <- data.frame(matrix(qc, nrow=1))
    colnames(qc)[1:2] <- c("mean.coverage.ontarget", "mean.coverage.offtarget")
    colnames(qc)[3:4] <- c("mean.duplication.ontarget", "mean.duplication.offtarget")
    colnames(qc)[5:10] <- paste0("mom.", c("raw", "raw", "post.gc", "post.gc", 
                             "post.reptiming", "post.reptiming"),
                             ".", rep(c("ontarget", "offtarget"),3))
    fwrite(qc, file = output.qc.file, row.names = FALSE, quote = FALSE,
        sep = " ")
}
    
.createCoverageGgplot <- function(raw, normalized, plot.max.density, x, log = FALSE) {
    if (length(normalized) < plot.max.density) {
        density <- "Low"
    } else {
        density <- "High"
    }
    raw$norm_status <- "Pre-normalized"
    normalized$norm_status <- "Post-normalized"
    ids <- c("coverage","average.coverage","gc_bias", "reptiming", 
             "norm_status", "on.target")
    tumCov <- rbind(as.data.frame(raw)[, ids],
                    as.data.frame(normalized)[, ids])

    tumCov <- tumCov[which(tumCov$average.coverage < 
        quantile(tumCov$average.coverage, 0.999, na.rm = TRUE)),]

    if (sum(!tumCov$on.target)) {
        tumCov <- tumCov[which(tumCov$on.target | tumCov$average.coverage < 
            quantile(tumCov$average.coverage[!tumCov$on.target], 0.99, na.rm=TRUE)),]
    }
    tumCov$on.target <- factor(ifelse(tumCov$on.target, "on-target", "off-target"), 
        levels = c("on-target", "off-target"))
    tumCov$norm_status <- factor(tumCov$norm_status, levels = c("Pre-normalized","Post-normalized"))
    if (log) tumCov$average.coverage <- log(tumCov$average.coverage)

    gp <- ggplot(tumCov, aes_string(x = x, y = "average.coverage"))
    if (density == "Low") {
        gp <- gp + geom_point(color = "red", alpha = 0.2)
    } else if (density == "High") {
        gp <- gp + geom_point(color = "blue", alpha = 0.1) +
            stat_density2d(aes(fill = ..level..), geom = "polygon") +
            scale_alpha_continuous(limits = c(0.1, 0), 
                                   breaks = seq(0, 0.1, by = 0.025))
    }

    gp + ylab(paste0(if (log) "Log-" else "", "Coverage")) +
       facet_wrap(~on.target + norm_status, ncol = 2, scales = "free_y")
}

.plotGcBias <- function(raw, normalized, medDiploid, plot.max.density) {
    gp <- .createCoverageGgplot(raw, normalized, plot.max.density, "gc_bias")

    plotMed <- medDiploid[,c("gcIndex","denom")]
    colnames(plotMed) <- c("gcIndex","gcNum")
    plotMed$norm_status <- "Pre-normalized"
    medDiploid$norm_status <- "Post-normalized"
    plotMed <- rbind(plotMed,medDiploid[,c("gcIndex","gcNum","norm_status")])
    plotMed$norm_status <- factor(plotMed$norm_status, 
        levels = c("Pre-normalized","Post-normalized"))
    plotMed$on.target <- factor("on-target", levels=c("on-target", "off-target"))
    gp <- gp + geom_line(data = plotMed, aes_string(x = "gcIndex", y = "gcNum"), color = "blue") +
          xlab("GC content")
    gp
}

.plotRepBias <- function(raw, normalized, lmFit, plot.max.density) {
    gp <- .createCoverageGgplot(raw, normalized, plot.max.density, "reptiming", log=TRUE) +
            xlab("Replication Timing")
    plotMed <- do.call(rbind, lapply(lmFit, function(x) 
        data.frame(rbind(x$before$coefficients, x$after$coefficients), 
            norm_status=c("Pre-normalized", "Post-normalized"), 
            on.target=x$on.target)))
    colnames(plotMed)[1:2] <- c("intercept", "slope")
    plotMed$norm_status <- factor(plotMed$norm_status, 
        levels = c("Pre-normalized","Post-normalized"))
    plotMed$on.target <- factor(ifelse(plotMed$on.target, "on-target", "off-target"), 
        levels=c("on-target", "off-target"))
    gp <- gp + geom_abline(data = plotMed, 
        aes_string(intercept = "intercept", slope = "slope"), color = "blue")
    gp  
}

#.correctDuplicationBiasLoess <- function(tumor) {
#    # ALPHA code
#    if (is.null(tumor$on.target)) tumor$on.target <- TRUE
#    if (is.null(tumor$duplication.rate)) return(tumor)
#    idx <- tumor$on.target
#    fit <- loess(tumor$duplication.rate[idx]~tumor$average.coverage[idx])
#    corFactor <- 1-predict(fit, tumor$average.coverage[idx])
#    tumor$coverage[idx] <- tumor$coverage[idx] / corFactor
#    tumor$counts[idx] <- tumor$counts[idx] / corFactor
#    .addAverageCoverage(tumor)
#}

.correctRepTimingBiasLinear <- function(tumor) {
    # ALPHA code
    if (is.null(tumor$on.target)) tumor$on.target <- TRUE
    if (is.null(tumor$reptiming) || sum(!is.na(tumor$reptiming))<100) {
        return(list(coverage=tumor, lmFit=NULL))
    }
    doutlier <- 0.001
    domain <- quantile(tumor$reptiming, probs = c(doutlier, 1 - doutlier), na.rm = TRUE)
    
    lmFit <- list()
            
    for (on.target in c(FALSE, TRUE)) {
        # ignore problematic intervals (missing or outlier data)
        idx <- tumor$on.target == on.target & 
               !is.na(tumor$reptiming) & 
               !is.na(tumor$average.coverage) & 
               tumor$average.coverage > 0 & 
               tumor$reptiming >= domain[1] &
               tumor$reptiming <= domain[2]
        if (!sum(idx)) next
        fit <- lm(log(tumor$average.coverage[idx])~tumor$reptiming[idx])
        corFactor <- exp(predict(fit)-mean(predict(fit)))

        tumor$coverage[idx] <- tumor$coverage[idx] / corFactor
        tumor$counts[idx] <- tumor$counts[idx] / corFactor
        tumor <- .addAverageCoverage(tumor)
        fitAfter <- lm(log(tumor$average.coverage[idx])~tumor$reptiming[idx])
        lmFit[[length(lmFit) + 1]] <- list(before=fit, after=fitAfter, on.target=on.target)
    }
    list(coverage=tumor, lmFit=lmFit)
}
    
.correctCoverageBiasLoess <- function(tumor) {
    if (is.null(tumor$on.target)) tumor$on.target <- TRUE
    gc_bias <- tumor$gc_bias
    for (on.target in c(FALSE, TRUE)) {
        tumor$valid <- tumor$on.target == on.target
        tumor$gc_bias <- gc_bias

        tumor$valid[tumor$average.coverage <= 0 | tumor$gc_bias < 0] <- FALSE

        if (!any(tumor$valid)) next
        tumor$ideal <- TRUE
        routlier <- 0.01
        range <- quantile(tumor$average.coverage[tumor$valid], prob = 
            c(0, 1 - routlier), na.rm = TRUE)
        doutlier <- 0.001
        domain <- quantile(tumor$gc_bias[tumor$valid], prob = c(doutlier, 1 - doutlier), 
            na.rm = TRUE)

        tumor$ideal[!tumor$valid | 
            ( tumor$mappability < 1 & on.target ) |
            tumor$average.coverage <= range[1] |
            tumor$average.coverage > range[2] | 
            tumor$gc_bias < domain[1] | 
            tumor$gc_bias > domain[2]] <- FALSE

        if (!any(tumor$ideal)) next
        
        if (!on.target) {    
            widthR <- quantile(width(tumor[tumor$ideal]), prob=0.1)
            tumor$ideal[width(tumor) < widthR] <- FALSE
        }
        rough <- loess(tumor$average.coverage[tumor$ideal] ~ tumor$gc_bias[tumor$ideal], 
            span = 0.03)
        i <- seq(0, 1, by = 0.001)
        final <- loess(predict(rough, i) ~ i, span = 0.3)
        cor.gc <- predict(final, tumor$gc_bias[tumor$valid])
        cor.gc.factor <- cor.gc/mean(tumor$average.coverage[tumor$ideal], na.rm=TRUE)
        cor.gc.factor[cor.gc.factor<=0] <- NA
        tumor$gc_bias <- as.integer(tumor$gc_bias*100)/100

        pre <- by(tumor$average.coverage[tumor$ideal], tumor$gc_bias[tumor$ideal], median, na.rm=TRUE)
        medDiploid <- as.data.frame(cbind(as.numeric(names(pre)),as.vector(pre)))
        colnames(medDiploid) <- c("gcIndex","denom")
        
        tumor$coverage[tumor$valid] <- (tumor$coverage[tumor$valid] / cor.gc.factor)
        tumor$counts[tumor$valid] <- (tumor$counts[tumor$valid] / cor.gc.factor)
        tumor <- .addAverageCoverage(tumor)

        post <- by(tumor$average.coverage[tumor$ideal], tumor$gc_bias[tumor$ideal], median, na.rm=TRUE)
        medDiploid$gcNum <- as.vector(post)
        tumor$ideal <- NULL
        tumor$valid <- NULL
    }
    list(coverage = tumor, medDiploid=medDiploid)
}

Try the PureCN package in your browser

Any scripts or data that you put into this service are public.

PureCN documentation built on Nov. 8, 2020, 5:37 p.m.