Nothing
## ----setup, include=FALSE, cache=FALSE, message = FALSE-----------------------
library("knitr")
### Chunk options: see http://yihui.name/knitr/options/ ###
## Text results
opts_chunk$set(echo = TRUE, warning = TRUE, message = TRUE, include = TRUE)
## Code decoration
opts_chunk$set(tidy = FALSE, comment = NA, highlight = TRUE)
## ----knitcitation, include=FALSE----------------------------------------------
library(knitcitations)
cleanbib()
cite_options(citation_format = "pandoc")
## ----install-pkg, eval=FALSE, results='hide'----------------------------------
# if (!requireNamespace("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install('PharmacoGx')
## ---- eval=FALSE, results='hide'----------------------------------------------
# library(PharmacoGx)
## ----download-example, eval=FALSE---------------------------------------------
# availablePSets()
# GDSC <- downloadPSet("GDSC")
## ----inconsistencies, results='hide', eval=TRUE, message = FALSE--------------
library(Biobase)
library(SummarizedExperiment)
library(S4Vectors)
library(PharmacoGx)
data("GDSCsmall")
data("CCLEsmall")
commonGenes <- intersect(fNames(GDSCsmall, "rna"),
fNames(CCLEsmall,"rna"))
common <- intersectPSet(list('CCLE'=CCLEsmall,
'GDSC'=GDSCsmall),
intersectOn=c("cell.lines", "drugs"),
strictIntersect=TRUE)
GDSC.auc <- summarizeSensitivityProfiles(
common$GDSC,
sensitivity.measure='auc_published',
summary.stat="median",
verbose=FALSE)
CCLE.auc <- summarizeSensitivityProfiles(
common$CCLE,
sensitivity.measure='auc_published',
summary.stat="median",
verbose=FALSE)
GDSC.ic50 <- summarizeSensitivityProfiles(
common$GDSC,
sensitivity.measure='ic50_published',
summary.stat="median",
verbose=FALSE)
CCLE.ic50 <- summarizeSensitivityProfiles(
common$CCLE,
sensitivity.measure='ic50_published',
summary.stat="median",
verbose=FALSE)
GDSCexpression <- summarizeMolecularProfiles(common$GDSC,
cellNames(common$GDSC),
mDataType="rna",
features=commonGenes,
verbose=FALSE)
CCLEexpression <- summarizeMolecularProfiles(common$CCLE,
cellNames(common$CCLE),
mDataType="rna",
features=commonGenes,
verbose=FALSE)
gg <- fNames(common[[1]], 'rna')
cc <- cellNames(common[[1]])
ge.cor <- sapply(cc, function (x, d1, d2) {
stats::cor(d1[ , x], d2[ , x], method="spearman",
use="pairwise.complete.obs")
## TO DO:: Ensure all assays are name so we can call by name instead of index
}, d1=assay(GDSCexpression, 1), d2=assay(CCLEexpression, 1))
ic50.cor <- sapply(cc, function (x, d1, d2) {
stats::cor(d1[, x], d2[ , x], method="spearman",
use="pairwise.complete.obs")
}, d1=GDSC.ic50, d2=CCLE.ic50)
auc.cor <- sapply(cc, function (x, d1, d2) {
stats::cor(d1[ , x], d2[ , x], method="spearman",
use="pairwise.complete.obs")
}, d1=GDSC.auc, d2=CCLE.auc)
w1 <- stats::wilcox.test(x=ge.cor, y=auc.cor,
conf.int=TRUE, exact=FALSE)
w2 <- stats::wilcox.test(x=ge.cor, y=ic50.cor,
conf.int=TRUE, exact=FALSE)
yylim <- c(-1, 1)
ss <- sprintf("GE vs. AUC = %.1E\nGE vs. IC50 = %.1E",
w1$p.value, w2$p.value)
## ----fig1---------------------------------------------------------------------
boxplot(list("GE"=ge.cor,
"AUC"=auc.cor,
"IC50"=ic50.cor),
main="Concordance between cell lines",
ylab=expression(R[s]),
sub=ss,
ylim=yylim,
col="lightgrey",
pch=20,
border="black")
## ---- eval=TRUE, results='asis'-----------------------------------------------
library(PharmacoGx)
library(pander)
data(CMAPsmall)
drug.perturbation <- drugPerturbationSig(CMAPsmall,
mDataType="rna",
verbose=FALSE)
data(HDAC_genes)
res <- apply(drug.perturbation[,,c("tstat", "fdr")],
2, function(x, HDAC){
return(connectivityScore(x=x,
y=HDAC[,2,drop=FALSE],
method="fgsea", nperm=100))
}, HDAC=HDAC_genes)
rownames(res) <- c("Connectivity", "P Value")
res <- t(res)
res <- res[order(res[,1], decreasing=TRUE),]
pander::pandoc.table(res,
caption='Connectivity Score results for HDAC inhibitor gene signature.',
style = 'rmarkdown')
## ----biomarkers, eval=TRUE, results='asis'------------------------------------
library(pander)
data(CCLEsmall)
features <- fNames(CCLEsmall, "rna")[
which(featureInfo(CCLEsmall,
"rna")$Symbol == "NQO1")]
sig.rna <- drugSensitivitySig(object=CCLEsmall,
mDataType="rna",
drugs=c("17-AAG"),
features=features,
sensitivity.measure="auc_published",
molecular.summary.stat="median",
sensitivity.summary.stat="median",
verbose=FALSE)
sig.mut <- drugSensitivitySig(object=CCLEsmall,
mDataType="mutation",
drugs=c("PD-0325901"),
features="BRAF",
sensitivity.measure="auc_published",
molecular.summary.stat="and",
sensitivity.summary.stat="median",
verbose=FALSE)
sig <- rbind(sig.rna, sig.mut)
rownames(sig) <- c("17-AAG + NQO1","PD-0325901 + BRAF")
colnames(sig) <- dimnames(sig.mut)[[3]]
pander::pandoc.table(t(sig), style = "rmarkdown", caption='P Value of Gene-Drug Association' )
## ----sessioninfo, eval = TRUE-------------------------------------------------
# set eval = FALSE if you don't want this info (useful for reproducibility) to appear
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.