Nothing
#' Use Lasso to do feature selection
#'
#' @param df.input Row is sample, column is feature. Required
#' @param target.vec y vector. Required
#' @param nfolds glmnet CV nfolds
#' @param logisticRegression doing logistic regression or linear regression.
#' @param nRun number of glmnet runs
#' @param alpha same as in glmnet
#' @import glmnet
#' @return signature
#' @export
#' @examples
#' data('iris')
#' getSignatureFromMultipleGlmnet(iris[,1:4],
#' c(rep(1,100), rep(0,50)), nfolds = 3, nRun = 10)
getSignatureFromMultipleGlmnet <- function(df.input,
target.vec,
nfolds = 10,
logisticRegression = TRUE,
nRun=100,
alpha = 1){
# make target numeric
if (!is.numeric(target.vec)){
target.vec[target.vec == target.vec[1]] <- 1
target.vec[target.vec != 1] <- 0
}
# factorize catogorical variables
factor.col.index <- c()
factor.variable.name <- c()
for (i in seq_len(ncol(df.input))){
if (is.character(df.input[,i]) | is.factor(df.input[,i])){
df.input[,i] <- as.factor(df.input[,i])
factor.variable.name <- c(factor.variable.name,
colnames(df.input)[i])
factor.col.index <- c(factor.col.index, i)
}
}
#return(head(df.input))
if (is.null(factor.col.index)){
x <- as.matrix(df.input)
} else{
df.input.factor <- df.input[,factor.col.index]
df.input.factor.onehot <- model.matrix( ~ .-1,
data.frame(df.input.factor))
df.input.factor.numeric <- df.input[,-factor.col.index]
x <- as.matrix(cbind(df.input.factor.numeric,
df.input.factor.onehot))
}
#return(x)
#body
featureDict <- list()
featureNum <- c()
weights.vec <- rep(0,ncol(x))
for (i in seq(1,nRun,1)) {
if (logisticRegression == FALSE){
fit2 <- suppressWarnings(cv.glmnet(x, target.vec,
alpha = alpha,
nfolds = nfolds))
} else{
target.vec <- as.factor(target.vec)
fit2 <- suppressWarnings(cv.glmnet(x, target.vec,
alpha = alpha,
family = "binomial",
type.measure = "auc",
nfolds = nfolds))
}
weights.mat <- as.matrix(coef(fit2, s = "lambda.min"))
weights.vec <- (weights.vec + weights.mat[-1,1])
tmp_vec <- as.vector((coef(fit2, s="lambda.min") != 0))
if (sum(tmp_vec) <= 1){
next
}
featureFromGlmnet <- colnames(x)[tmp_vec[-1]]
featureNum <- c(featureNum, length(featureFromGlmnet))
for (k in seq(1,length(featureFromGlmnet),1)){
gene <- featureFromGlmnet[k]
if (gene %in% names(featureDict)){
featureDict[[gene]] <- featureDict[[gene]] + 1
}
else{
if (is.na(gene) == FALSE){
featureDict[[gene]] <- 1
}
}
}
}
#print(featureDict)
featureSelectionComplete <- names(featureDict)
numFloor <- floor(mean(featureNum))
featureDictInverse <- list()
for (i in seq(1,length(featureDict),1)){
numTmp <- featureDict[[i]]
#print(numTmp)
numTmpChr <- as.character(numTmp)
if (numTmp %in% names(featureDictInverse)){
featureDictInverse[[numTmpChr]] <-
c(featureDictInverse[[numTmpChr]],
names(featureDict)[i])
}
else {
featureDictInverse[[numTmpChr]] <- c(names(featureDict)[i])
}
}
numIndex <- sort(as.numeric(names(featureDictInverse)),
decreasing = TRUE)
featureSelectionFloor <- c()
for (i in seq(1,length(numIndex),1)){
numTmp <- numIndex[i]
numTmpChr <- as.character(numTmp)
featureSelectionFloor <- c(featureSelectionFloor,
featureDictInverse[[numTmpChr]])
if (length(featureSelectionFloor) > numFloor) {
break
}
}
return.list <- list()
return.list[["feature"]] <- featureSelectionFloor
return.list[["counts"]] <- featureDict
return.list[["counts.inverse"]] <- featureDictInverse
return.list[["weights"]] <- weights.vec
selection.rate <- c()
for (i in seq_len(length(featureSelectionFloor))){
selection.rate <- c(selection.rate,
round(featureDict[[
paste(featureSelectionFloor[i])]]/nRun, 2))
}
percent <- function(x, digits = 2, format = "f", ...) {
paste0(formatC(100 * x, format = format, digits = digits, ...), "%")
}
return.list[["selection_rate"]] <- percent(selection.rate)
return.list[["feature_weights"]] <- weights.vec[match(featureSelectionFloor,
colnames(x))]/nRun
if (sum(selection.rate > 1) >0){
feature.remove.index <- which(selection.rate > 1)
return.list <- lapply(return.list, function(x)
{x <- x[-feature.remove.index]} )
}
if (sum(startsWith(featureSelectionFloor,"others")) > 0){
feature.remove.index <- which(startsWith(featureSelectionFloor,
"others"))
return.list <- lapply(return.list, function(x)
{x <- x[-feature.remove.index]} )
}
# Here we get the features:
return(return.list)
}
#' Do bootstrap and LOOCV
#'
#' @param df Row is sample, column is feature. Required
#' @param targetVec y vector. Required
#' @param nboot number of BOOTSTRAP
#' @importFrom gmodels ci
#' @return bootstrap loocv result dataframe
#' @export
#' @examples
#' data('iris')
#' Bootstrap_LOOCV_LR_AUC(iris[,1:4],
#' c(rep(1,100), rep(0,50)), nboot = 3)
Bootstrap_LOOCV_LR_AUC <- function(df, targetVec, nboot=50){
output.auc.vec <- c()
output.other.df <- NULL
# make target numeric
if (!is.numeric(targetVec)){
targetVec[targetVec == targetVec[1]] <- 1
targetVec[targetVec != 1] <- 0
}
targetVec <- as.numeric(targetVec)
auc.vec <- c()
for (i in seq_len(nboot)){
index.boot <- sample(seq_len(nrow(df)), nrow(df), replace = TRUE)
df.tmp <- df[index.boot,]
auc.vec <- c(auc.vec, LOOAUC_simple_multiple_noplot_one_df(df.tmp,
targetVec[index.boot]))
}
result.type <- c("AUC Estimate","CI lower","CI upper","Std. Error")
output.df <- data.frame(result.type, ci(auc.vec))
colnames(output.df) <- c("Type", "Value")
return(output.df)
}
#' LOOCV
#'
#' @param df Row is sample, column is feature. Required
#' @param targetVec y vector. Required
#' @importFrom ROCR prediction performance
#' @return mean auc
#' @export
#' @examples
#' data('iris')
#' LOOAUC_simple_multiple_noplot_one_df(iris[,1:4],
#' c(rep(1,100), rep(0,50)))
LOOAUC_simple_multiple_noplot_one_df <- function(df, targetVec){
auc.vec <- c()
nSample <- nrow(df)
vecProbTmp <- c()
testPredictionClassVec <- c()
for (j in seq_len(nSample)){
train = as.matrix(df[-j,])
test = matrix(as.numeric(df[j,]), nrow = 1)
fit <- glmnet(train, targetVec[-j], family = "binomial")
testProb <- predict(fit,type="response", newx = test, s = 0)
vecProbTmp <- c(vecProbTmp, testProb)
testPredictionClassVec[j] <- predict(fit,type="class",
newx = test, s = 0)
}
loo.pred = prediction(vecProbTmp, targetVec)
loo.perf = performance(loo.pred,"tpr","fpr")
auc <- performance(loo.pred,"auc")
auc <- unlist(slot(auc, "y.values"))
aucRound <- round(auc,3)
auc.vec <- c(auc.vec, aucRound)
return(mean(auc.vec))
}
#' LOOCV with ROC curve
#'
#' @param df Row is sample, column is feature. Required
#' @param targetVec y vector. Required
#' @importFrom ROCR prediction performance
#' @return the ROC
#' @export
#' @examples
#' data('iris')
#' LOOAUC_simple_multiple_one_df(iris[,1:4],
#' c(rep(1,100), rep(0,50)))
LOOAUC_simple_multiple_one_df <- function(df, targetVec){
auc.vec <- c()
nSample <- nrow(df)
vecProbTmp <- c()
testPredictionClassVec <- c()
# make target numeric
if (!is.numeric(targetVec)){
targetVec[targetVec == targetVec[1]] <- 1
targetVec[targetVec != 1] <- 0
}
targetVec <- as.numeric(targetVec)
for (j in seq_len(nSample)){
train = as.matrix(df[-j,])
test = matrix(as.numeric(df[j,]), nrow = 1)
fit <- glmnet(train, targetVec[-j], family = "binomial")
testProb <- predict(fit,type="response", newx = test, s = 0)
vecProbTmp <- c(vecProbTmp, testProb)
testPredictionClassVec[j] <- predict(fit,
type="class",
newx = test,
s = 0)
}
loo.pred.plot = prediction(vecProbTmp, targetVec)
loo.perf.plot = performance(loo.pred.plot,"tpr","fpr")
return(list(loo.pred.plot = loo.pred.plot,
loo.perf.plot = loo.perf.plot,
testPredictionClassVec = testPredictionClassVec,
testPredictionProb = vecProbTmp))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.