Nothing
#'
#' This is a helper function to generate a nice color pallet for plotting
#'
#' @examples
#' x <- 10
#' getXColors(x)
#'
#' x <- letters[1:10]
#' getXColors(x)
#' @noRd
getXColors <- function(x, set="Set2"){
if(all(is.na(set))){
return(NULL)
}
n <- x
if(!isScalarNumeric(x)){
if(is.numeric(x)){
set <- tryCatch({
colorRampPalette(set)
set
}, error = function(e){
warning("Please specify correct color for ",
"colorRampPalette. Using default. ",
"\n Error was:\n ", e)
NULL
})
return(set)
}
x <- factor(x)
n <- length(levels(x))
}
if(length(set) == 1){
cols <- suppressWarnings(brewer.pal(n=n, name=set))
} else {
cols <- set
}
if(length(cols) > n){
cols <- cols[seq_len(n)]
}
if(length(x) > 0){
ans <- cols[x]
names(ans) <- as.character(x)
return(ans)
}
return(cols)
}
#'
#' Creates a color mapping for the given annotation or return NULL
#'
#' @noRd
getAnnoColors <- function(colorSet, annotation){
if(!is.character(colorSet) & is.null(annotation)){
return(NULL)
}
mapply(grp=annotation, set=colorSet, SIMPLIFY=FALSE,
FUN=function(grp, set) getXColors(grp[!duplicated(grp)], set))
}
#'
#' Ignore warning of the text aestethics in ggplot for plotly since it is
#' inofficial till now
#'
#' @noRd
ignoreAesTextWarning <- function(expr){
withCallingHandlers(expr,
warning = function(w){
if(endsWith(conditionMessage(w), "unknown aesthetics: text")){
invokeRestart("muffleWarning")
}
})
}
#'
#' Get annotation for row/col dependent on input
#' @noRd
getAnnoHeatmap <- function(x, matrix, groups, nClust, extractFun=colData){
# select annotations based on metadata (colData/mcols)
if(!isScalarNA(groups)){
ans <- as.data.frame(extractFun(x)[, groups])
colnames(ans) <- groups
} else {
ans <- as.data.frame(extractFun(x)[,character()])
}
# add clustering
if(isScalarNumeric(nClust) & isScalarNA(groups)){
clusters <- cutree(hclust(dist(matrix)), nClust)
ans[["nClust"]] <- as.character(clusters)
}
# return NULL if no annotation is requested
if(ncol(ans) == 0){
return(NULL)
}
# due to not propagating rownames correctly in mcols/rowData in R < 3.5.0
# check if rownames is null and then retrive from object
rownames(ans) <- rownames(extractFun(x))
if(is.null(rownames(extractFun(x)))){
if(ncol(x) == nrow(ans)){
rownames(ans) <- colnames(x)
} else {
rownames(ans) <- rownames(x)
}
}
return(ans)
}
getNiceName <- function(x, maxChar=12){
stopifnot(maxChar > 2)
ifelse(nchar(x) > maxChar,
paste0(substr(x, 0, maxChar - 2), ".."),
x)
}
#'
#' This function is used by the plotDispEsts function.
#'
#' TODO
#'
#' @noRd
getDispEstsData <- function(ods, mu=NULL){
if(is.null(theta(ods))){
stop('Please fit the ods first. ods <- fit(ods)')
}
odsMu <- rowMeans(counts(ods, normalized=TRUE))
if(is.null(mu)){
mu <- odsMu
}
theta <- theta(ods)
xidx <- 10^(seq.int(max(-5,log10(min(mu))-1), log10(max(mu))+0.1,
length.out = 500))
# fit DESeq2 parametric Disp Fit
fit <- parametricDispersionFit(mu, 1/theta)
pred <- fit(xidx)
return(list(
mu=mu,
disp=theta,
xpred=xidx,
ypred=pred,
fit=fit
))
}
#'
#' This function is not exported from DESeq2. Therefore we copied it over to
#' here. If DESeq2 will export this function we can use it instead.
#'
#' TODO
#'
#' @noRd
parametricDispersionFit <- function (means, disps){
coefs <- c(0.1, 1)
iter <- 0
while (TRUE) {
residuals <- disps/(coefs[1] + coefs[2]/means)
good <- which((residuals > 1e-04) & (residuals < 15))
suppressWarnings({
fit <- glm(disps[good] ~ I(1/means[good]),
family=Gamma(link="identity"), start=coefs)
})
oldcoefs <- coefs
coefs <- coefficients(fit)
if (!all(coefs > 0)){
warning("Parametric dispersion fit failed.",
" Using last working coefficients:",
paste0(round(oldcoefs, 3), sep=", "))
coefs <- oldcoefs
break
}
if ((sum(log(coefs/oldcoefs)^2) < 1e-06) & fit$converged)
break
iter <- iter + 1
if (iter > 100) {
warning("Dispersion fit did not converge after 100 ",
"iterations. We stopped here.")
break
}
}
names(coefs) <- c("asymptDisp", "extraPois")
ans <- function(q) coefs[1] + coefs[2]/q
attr(ans, "coefficients") <- coefs
ans
}
#'
#' Get the gene name or index
#'
#' @noRd
getGeneIndex <- function(geneIdx, ods){
if(is.null(geneIdx)){
stop('Please provide a geneID')
}
if(is.logical(geneIdx)){
geneIdx <- which(geneIdx)
}
if(is.numeric(geneIdx)){
if(!(is.numeric(geneIdx) && max(geneIdx) <= nrow(ods))){
stop('Gene index is out of bounds:', paste(geneIdx, collapse=", "))
}
if(!is.null(rownames(ods))){
geneIdx <- rownames(ods)[geneIdx]
}
}
if(is.character(geneIdx) & any(!geneIdx %in% rownames(ods))){
stop("Gene ID is not in the data set.")
}
return(geneIdx)
}
#' @rdname getter_setter_functions
#' @export
getBestQ <- function(ods){
if('optimalEncDim' %in% names(metadata(ods))){
return(metadata(ods)[['optimalEncDim']])
}
if('encDimTable' %in% names(metadata(ods))){
encTable <- metadata(ods)[['encDimTable']]
return(getBestQDT(encTable, 'aucPR'))
}
# warning('Please find the optimal encoding dimension by running. ')
return(NA_integer_)
}
getBestQDT <- function(dt, usedEvalMethod='aucPR', digits=10){
if('evalMethod' %in% colnames(dt)){
testFun <- ifelse(all(dt[,evalMethod == usedEvalMethod]),
which.max, which.min)
} else {
testFun <- which.max
}
dt[,encodingDimension[
seq_len(.N) == testFun(round(evaluationLoss, digits))]]
}
#'
#' Estimation of Q
#'
#' Estimating the best q for the given data set
#'
#' @param ods An OutriderDataSet object
#' @return The estimated dimension of hidden confounders
#'
#' @examples
#' ods <- makeExampleOutriderDataSet()
#'
#' estimateBestQ(ods)
#'
#' @export
estimateBestQ <- function(ods){
round(max(2, min(500, 3.7 + 0.16*ncol(ods))))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.