Description Usage Arguments Details Value Methods (by class) See Also Examples
Given an object with the data, it fits a nb model.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 | newFit(Y, ...)
## S4 method for signature 'SummarizedExperiment'
newFit(
Y,
X,
V,
K = 2,
which_assay,
commondispersion = TRUE,
verbose = FALSE,
maxiter_optimize = 100,
stop_epsilon = 1e-04,
children = 1,
random_init = FALSE,
random_start = FALSE,
n_gene_disp = NULL,
n_cell_par = NULL,
n_gene_par = NULL,
...
)
## S4 method for signature 'matrix'
newFit(
Y,
X,
V,
K = 2,
commondispersion = TRUE,
verbose = FALSE,
maxiter_optimize = 100,
stop_epsilon = 1e-04,
children = 1,
random_init = FALSE,
random_start = FALSE,
n_gene_disp = NULL,
n_cell_par = NULL,
n_gene_par = NULL,
...
)
## S4 method for signature 'DelayedMatrix'
newFit(
Y,
X,
V,
K = 2,
commondispersion = TRUE,
verbose = FALSE,
maxiter_optimize = 100,
stop_epsilon = 1e-04,
children = 1,
random_init = FALSE,
random_start = FALSE,
n_gene_disp = NULL,
n_cell_par = NULL,
n_gene_par = NULL,
...
)
## S4 method for signature 'dgCMatrix'
newFit(Y, ...)
|
Y |
The matrix with the data |
... |
Additional parameters to describe the model, see
|
X |
The design matrix containing sample-level covariates, one sample per row. If missing, X will contain only an intercept. |
V |
The design matrix containing gene-level covariates, one gene per row. If missing, V will contain only an intercept. |
K |
integer. Number of latent factors(default 2). |
which_assay |
numeric or character. Which assay of Y to use. If missing, if 'assayNames(Y)' contains "counts" then that is used. Otherwise, the first assay is used. |
commondispersion |
Whether or not a single dispersion for all features is estimated (default TRUE). |
verbose |
Print helpful messages(default FALSE). |
maxiter_optimize |
maximum number of iterations for the optimization step (default 100). |
stop_epsilon |
stopping criterion in the optimization step, when the relative gain in likelihood is below epsilon (default 0.0001). |
children |
number of cores of the used cluster(default 1) |
random_init |
if TRUE no initializations is done(default FALSE) |
random_start |
if TRUE the setup of parameters is a random samplig(default FALSE) |
n_gene_disp |
number of genes used in mini-batch dispersion estimation approach(default NULL > all genes are used) |
n_cell_par |
number of cells used in mini-batch cell's related parameters estimation approach(default NULL > all cells are used) |
n_gene_par |
number of genes used in mini-batch gene's related parameters estimation approach(default NULL > all genes are used) |
By default, i.e., if no arguments other than Y
are passed,
the model is fitted with an intercept for the regression across-samples and
one intercept for the regression across genes.
If Y is a Summarized experiment, the function uses the assay named "counts", if any, or the first assay.
Currently, if Y is a sparseMatrix, this calls the newFit method on as.matrix(Y)
An object of class newmodel
that has been fitted by penalized
maximum likelihood on the data.
SummarizedExperiment
: Y is a
SummarizedExperiment
.
matrix
: Y is a matrix of counts (genes in rows).
DelayedMatrix
: Y is a DeleyedMatrix of counts (genes in rows).
dgCMatrix
: Y is a sparse matrix of counts (genes in rows).
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.