Description Usage Arguments Details Value Author(s) References Examples
Neighbor Net: An approach to infer putative disease-specific mechanisms using neighboring gene networks.
1 | neighborNet(de, ref, listofgenes, threshold = 0.1, minsize = 2)
|
de |
a vector including the differentially expressed genes; |
ref |
the reference vector for all genes in the analysis |
listofgenes |
a list representing the neighbor networks associated to each gene; the name of the list must be the same as genes in the |
threshold |
a threshold of choosing significant neighbor networks (default is 0.1) |
minsize |
minimum size of the neighbor networks that should be considered in the analysis (default is 2) |
See details in the cited articles.
An object of class graphNEL
.
Sahar Ansari and Sorin Draghici
Sahar Ansari, Michele Donato, Nafiseh Saberian, Sorin Draghici; An approach to infer putative disease-specific mechanisms using neighboring gene networks, Bioinformatics, Volume 33, Issue 13, 1 July 2017, Pages 1987<e2><80><93>1994
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | # load multiple colorectal cancer study (public data available in GEO
# ID: GSE4183, GSE9348, GSE21510, GSE32323, GSEl8671)
# These files contains the tables, produced by the limma package with
# added gene information.
# The table contains the expression fold change and signficance of each
# probe set comparing colorectal cancer disease and normal.
load(system.file("extdata/dataColorectal4183.RData", package = "NeighborNet"))
load(system.file("extdata/dataColorectal9348.RData", package = "NeighborNet"))
load(system.file("extdata/dataColorectal21510.RData", package = "NeighborNet"))
load(system.file("extdata/dataColorectal32323.RData", package = "NeighborNet"))
load(system.file("extdata/dataColorectal8671.RData", package = "NeighborNet"))
head(dataColorectal4183)
load(system.file("extdata/listofgenes.RData", package = "NeighborNet"))
head(listofgenes)
# select differentially expressed genes for each data set at p-value below 1%
# and absolute value for more than 1.5 and save their entrez ID in a vector de1 to de5
pvThreshold <- 0.01
foldThreshold <- 1.5
de1 <- dataColorectal4183$EntrezID [
dataColorectal4183$adj.P.Val < pvThreshold &
abs(dataColorectal4183$logFC) > foldThreshold]
de2 <- dataColorectal9348$EntrezID [
dataColorectal9348$adj.P.Val < pvThreshold &
abs(dataColorectal9348$logFC) > foldThreshold]
de3 <- dataColorectal21510$EntrezID [
dataColorectal21510$adj.P.Val < pvThreshold &
abs(dataColorectal21510$logFC) > foldThreshold]
de4 <- dataColorectal32323$EntrezID [
dataColorectal32323$adj.P.Val < pvThreshold &
abs(dataColorectal32323$logFC) > foldThreshold]
de5 <- dataColorectal8671$EntrezID [
dataColorectal8671$adj.P.Val < pvThreshold &
abs(dataColorectal8671$logFC) > foldThreshold]
all <- unique( c(dataColorectal4183$EntrezID, dataColorectal9348$EntrezID,
dataColorectal21510$EntrezID, dataColorectal32323$EntrezID,
dataColorectal8671$EntrezID))
de <- unique( c(de1,de2,de3,de4,de5))
sig_net <- neighborNet (de, all, listofgenes)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.