tests/testthat/test_NBAMSeq.R

context("Test NBAMSeq")

test_that("Test invalid input", {

    nrows = 5
    ncols = 10
    counts = matrix(rnbinom(nrows * ncols, 10, 0.3), nrows)
    pheno = runif(ncols, 20, 80)
    colData = DataFrame(pheno = pheno)
    gsd = NBAMSeqDataSet(countData = counts,
        colData = colData, design = ~s(pheno))
    expect_error(NBAMSeq(gsd, gamma = "unknown"))
    expect_error(NBAMSeq(gsd, gamma = -2),
                 " 'gamma' should be greater or equal to 1.")
    expect_error(NBAMSeq(gsd, gamma = c(1,2)))
    expect_error(NBAMSeq(gsd, parallel = 1))
    expect_error(NBAMSeq(gsd, parallel = c(TRUE, FALSE)))
    expect_error(NBAMSeq(gsd, fitlin = 1))
    expect_error(NBAMSeq(gsd, fitlin = c(TRUE, FALSE)))

    #dds = makeExampleDESeqDataSet()
    #expect_error(NBAMSeq(dds))

})


test_that("Test NBAMSeq output", {
    # gsd = makeExample(n=5,m=10)
    ## Test parallel option
    # gsd = NBAMSeq(gsd, parallel = TRUE)
    # gsd2 = NBAMSeq(gsd, parallel = FALSE)
    # expect_identical(gsd,gsd2)
    
    #expect_true("Intercept"%in%names(mcols(gsd)))
    #expect_true("edf_pheno"%in%names(mcols(gsd)))
    #expect_true("Chisq_pheno"%in%names(mcols(gsd)))
    #expect_true("PValue_pheno"%in%names(mcols(gsd)))
    #expect_true("df_residual"%in%names(mcols(gsd)))
    #expect_true("null_deviance"%in%names(mcols(gsd)))
    #expect_true("df_null"%in%names(mcols(gsd)))

    n = 3
    m = 30
    pheno = runif(m, 20, 80)
    mu = matrix(rep(NA, n*m), nrow = n)
    interceptMean = 3
    interceptSD = 2
    betamat = matrix(rep(NA, n*3), nrow = n)
    betamat[,1] = rnorm(n, 3, 2)
    betamat[,2] = 0.2
    betamat[,3] = -0.0025

    x = cbind(rep(1,m), pheno, pheno^2)
    mu = t(2^(x %*% t(betamat))) + 100
    mumean = apply(mu, 1, mean)
    disp = 10/mumean + 0.001

    countData = matrix(rnbinom(m*n, mu=mu, size=1/disp), ncol=m)
    mode(countData) = "integer"
    colnames(countData) = paste0("sample", 1:m)
    rownames(countData) = paste0("gene", 1:n)

    var1 = rnorm(m)
    var2 = rnorm(m)
    var3 = rnorm(m)
    var4 = as.factor(sample(c(0,1,2), m, replace = TRUE))
    colData = data.frame(pheno = pheno, var1 = var1, var2 = var2,
                         var3 = var3, var4 = var4)
    gsd = NBAMSeqDataSet(countData = countData, colData = colData,
                        design = ~ var4 + s(pheno) + s(var1) + var2 + var3)

    ## Test getsf and setsf
    sf = getsf(gsd)
    expect_true(is.null(sf))
    
    sf = sample(1:5,m, replace = TRUE)
    setsf(gsd) = sf
    expect_true(all(getsf(gsd) == sf))
    
    # #### The following code are comments in order to pass the Bioconductor
    # ## check 5 min limit
    # 
    # gsd = NBAMSeqDataSet(countData = countData, colData = colData,
    #                      design = ~ var4 + s(pheno) + s(var1) + var2 + var3)
    # 
    # gsd = NBAMSeq(gsd, parallel = TRUE)
    # gsd2 = NBAMSeq(gsd, parallel = FALSE)
    # expect_identical(gsd,gsd2)
    # expect_true("mu" %in% names(assays(gsd)))
    # expect_true(is.data.frame(assays(gsd)[["mu"]]))
    # expect_true(nrow(assays(gsd)[["mu"]]) == nrow(gsd))
    # expect_true(ncol(assays(gsd)[["mu"]]) == ncol(gsd))
    # expect_true(all(rownames(assays(gsd)[["mu"]]) == rownames(gsd)))
    # expect_true(all(colnames(assays(gsd)[["mu"]]) == colnames(gsd)))
    # 
    # #check if gamma is working well
    # expect_true(all(mcols(gsd)$gamma == 2.5))
    # 
    # sf = getsf(gsd)
    # expect_true(is.numeric(sf))
    # expect_true(length(sf) == m)
    # expect_true(all(names(sf) == paste0("sample", 1:m)))
    # expect_true(all(getsf(gsd) == sf))
    # 
    # dds = DESeqDataSetFromMatrix(countData = assay(gsd),
    #                              colData = colData(gsd), design = ~pheno)
    # dds = estimateSizeFactors(dds)
    # #expect_true(all(sizeFactors(dds)==sf))
    # 
    # 
    # expect_true("Intercept"%in%names(mcols(gsd)))
    # expect_true("edf_var1"%in%names(mcols(gsd)))
    # expect_true("Chisq_var1"%in%names(mcols(gsd)))
    # expect_true("PValue_var1"%in%names(mcols(gsd)))
    # expect_true("var2"%in%names(mcols(gsd)))
    # expect_true("SE_var2"%in%names(mcols(gsd)))
    # expect_true("PValue_var2"%in%names(mcols(gsd)))
    # expect_true("smooth_pheno"%in%names(mcols(gsd)))
    # expect_true("smooth_var1"%in%names(mcols(gsd)))
    # expect_true("df_residual"%in%names(mcols(gsd)))
    # expect_true("null_deviance"%in%names(mcols(gsd)))
    # expect_true("df_null"%in%names(mcols(gsd)))
    # ## check whether AIC/BIC are saved in the object
    # expect_true("AIC"%in%names(mcols(gsd)))
    # expect_true("BIC"%in%names(mcols(gsd)))
    # 
    # # Test invalid input for results function
    # expect_error(results(gsd, name = 1))
    # expect_error(results(gsd, name = c("pheno","var1")))
    # expect_error(results(gsd),
    #              "Either 'name' or 'contrast' argument should be provided.")
    # expect_error(results(gsd, name = "var10"))
    # 
    # expect_error(results(gsd, name = "pheno", indepfilter = "unknown"))
    # expect_error(results(gsd, name = "pheno", indepfilter = c(TRUE, FALSE)))
    # 
    # expect_error(results(gsd, name = "pheno", alpha = "unknown"))
    # expect_error(results(gsd, name = "pheno", alpha = c(0.5, 0.6)))
    # expect_error(results(gsd, name = "pheno", alpha = -0.1))
    # expect_error(results(gsd, name = "pheno", alpha = 1.2))
    # 
    # 
    # ## test result function output
    # expect_error(results(gsd, name = "var4"),
    #              " 'name' should be a continuous variable. For factors,
    #             please use 'contrast' argument.")
    # expect_error(results(gsd, contrast = c("var4", 1)),
    #              " 'contrast' should be a character of length 3.")
    # expect_error(results(gsd, contrast = c("var4", 1, 1)),
    #              "2nd and 3rd element in constrast should be different.")
    # expect_error(results(gsd, contrast = c("var10", 1, 0)),
    #              "1st element in contrast should be a variable in colData.")
    # expect_error(results(gsd, contrast = c("var2", 1, 0)),
    #              "The variable in contrast should be a factor. For continuous
    #             variables, please use 'name' argument.")
    # expect_error(results(gsd, contrast = c("var4", 5, 0)),
    #              "2nd element in contrast should be an appropriate level.")
    # expect_error(results(gsd, contrast = c("var4", 1, 10)),
    #              "3rd element in contrast should be an appropriate level.")
    # 
    # res1 = results(gsd, name = "pheno")
    # expect_true("baseMean"%in%names(res1))
    # expect_true("edf"%in%names(res1))
    # expect_true("stat"%in%names(res1))
    # expect_true("pvalue"%in%names(res1))
    # expect_true("padj"%in%names(res1))
    # expect_true("AIC"%in%names(res1))
    # expect_true("BIC"%in%names(res1))
    # 
    # res2 = results(gsd, name = "var3")
    # expect_true("baseMean"%in%names(res2))
    # expect_true("coef"%in%names(res2))
    # expect_true("SE"%in%names(res2))
    # expect_true("stat"%in%names(res2))
    # expect_true("pvalue"%in%names(res2))
    # expect_true("padj"%in%names(res2))
    # expect_true("AIC"%in%names(res2))
    # expect_true("BIC"%in%names(res2))
    # 
    # ## The following code are comments in order to pass the Bioconductor
    # # ## check 5 min limit
    # ## check contrast
    # res3 = results(gsd, contrast = c("var4", 1, 2), parallel = TRUE)
    # res4 = results(gsd, contrast = c("var4", 2, 1), parallel = TRUE)
    # expect_identical(res3[["baseMean"]], res4[["baseMean"]])
    # expect_equal(res3[["coef"]],-res4[["coef"]], tolerance=1e-8)
    # expect_equal(res3[["SE"]],res4[["SE"]], tolerance=1e-8)
    # expect_equal(res3[["stat"]],-res4[["stat"]], tolerance=1e-8)
    # expect_equal(res3[["pvalue"]],res4[["pvalue"]], tolerance=1e-8)
    # expect_equal(res3[["padj"]],res4[["padj"]], tolerance=1e-8)
    # 
    # # ## check parallel option:
    # res7 = results(gsd, contrast = c("var4", 2, 1), parallel = FALSE)
    # expect_identical(res4[["baseMean"]], res7[["baseMean"]])
    # expect_equal(res4[["coef"]], res7[["coef"]], tolerance=1e-8)
    # expect_equal(res4[["SE"]], res7[["SE"]], tolerance=1e-8)
    # expect_equal(res4[["stat"]], res7[["stat"]], tolerance=1e-8)
    # expect_equal(res4[["pvalue"]], res7[["pvalue"]], tolerance=1e-8)
    # expect_equal(res4[["padj"]], res7[["padj"]], tolerance=1e-8)
    # 
    # 
    # res5 = results(gsd, contrast = c("var4", 1, 0))
    # res6 = results(gsd, contrast = c("var4", 0, 1))
    # expect_identical(res5[["baseMean"]], res6[["baseMean"]])
    # expect_identical(res5[["coef"]], -res6[["coef"]])
    # expect_identical(res5[["SE"]], res6[["SE"]])
    # expect_identical(res5[["stat"]], -res6[["stat"]])
    # expect_equal(res5[["pvalue"]],res6[["pvalue"]], tolerance=1e-8)
    # expect_equal(res5[["padj"]],res6[["padj"]], tolerance=1e-8)
    # 
    # expect_true(all(res5[["coef"]]==mcols(gsd)[["var4_1_vs_0"]]))
    # expect_true(all(res5[["SE"]]==mcols(gsd)[["SE_var4_1_vs_0"]]))
    # expect_true(all(res5[["pvalue"]]==mcols(gsd)[["PValue_var4_1_vs_0"]]))
    # 
    # gsd = NBAMSeqDataSet(countData = countData, colData = colData,
    #                      design = ~ var4 + s(pheno) + s(var1) + var2 + var3)
    # gsd1 = NBAMSeq(gsd, fitlin = TRUE, parallel = TRUE)
    # gsd2 = NBAMSeq(gsd, fitlin = TRUE, parallel = FALSE)
    # expect_identical(gsd1,gsd2)
    # expect_true(!"AIC"%in%names(mcols(gsd1)))
    # expect_true(!"BIC"%in%names(mcols(gsd1)))
    # expect_true("AICnonlin"%in%names(mcols(gsd1)))
    # expect_true("BICnonlin"%in%names(mcols(gsd1)))
    # expect_true("AICintercept"%in%names(mcols(gsd1)))
    # expect_true("BICintercept"%in%names(mcols(gsd1)))
    # expect_true("AIClin"%in%names(mcols(gsd1)))
    # expect_true("BIClin"%in%names(mcols(gsd1)))
    # 
    # res1 = results(gsd1, name = "pheno")
    # expect_true(!"AIC"%in%names(res1))
    # expect_true(!"BIC"%in%names(res1))
    # expect_true("AICnonlin"%in%names(res1))
    # expect_true("BICnonlin"%in%names(res1))
    # expect_true("AICintercept"%in%names(res1))
    # expect_true("BICintercept"%in%names(res1))
    # expect_true("BIClin"%in%names(res1))
    # expect_true("BIClin"%in%names(res1))
})

Try the NBAMSeq package in your browser

Any scripts or data that you put into this service are public.

NBAMSeq documentation built on Nov. 8, 2020, 6:26 p.m.