Description Usage Arguments Details Value Author(s) See Also Examples
View source: R/compareAnalysis.R
This function plots the correlation graph in an
interactive device using function tkplot
.
1 2 3 4 |
dataGraph |
A data.frame containing the graph
description. It must have two columns |
edgeWeight |
The column of dataGraph used to weight edges. |
nodeAttrs |
A data.frame with node description, see
function |
nodeShape |
Denotes the column of |
nodeCol |
Denotes the column of |
nodeName |
Denotes the column of |
col |
A vector of colors, for the nodes, indexed by
the unique elements of |
shape |
A vector of shapes indexed by the unique
elements of column |
title |
Title for the plot |
reciproCol |
Denotes the column of |
tkplot |
If TRUE, performs interactive plot with
function |
... |
Additional parameters as required by
|
You have to slighly move the nodes to see cliques because
strongly related nodes are often superimposed. The
edgeWeight
column is used to weight the edges
within the fruchterman.reingold layout available in the
package igraph
.
The argument nodeCol
typically denotes the column
containing the names of the datasets. Colors are
automatically attributed to the nodes using palette Set3
of package RColorBrewer
. The corresponding colors
can be directly specified in the 'col' argument. In that
case, 'col' must be a vector of colors indexed by the
unique elements contained in nodeCol
column (e.g
dataset ids).
As for colors, one can define the column of
nodeAttrs
that is used to define the node shapes.
The corresponding shapes can be directly specified in the
shape
argument. In that case, shape
must be
one of c("circle","square", " vcsquare",
"rectangle", "crectangle", "vrectangle")
and must be
indexed by the unique elements of nodeShape
column.
Unfortunately, shapes can't be taken into account when tkplot is TRUE (interactive plot).
If reciproCol
is not missing, it is used to color
the edges, either in grey if the edge is not reciprocal
or in black if the edge is reciprocal.
A list consisting of
a data.frame defining the correlation graph
a data.frame describing the node of the graph
the graph as an object of class
igraph
the id of the graph plotted
using tkplot
Anne Biton
compareAn
, nodeAttrs
,
compareAn2graphfile
,
runCompareIcaSets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | dat1 <- data.frame(matrix(rnorm(10000),ncol=10,nrow=1000))
rownames(dat1) <- paste("g", 1:1000, sep="")
colnames(dat1) <- paste("s", 1:10, sep="")
dat2 <- data.frame(matrix(rnorm(10000),ncol=10,nrow=1000))
rownames(dat2) <- paste("g", 1:1000, sep="")
colnames(dat2) <- paste("s", 1:10, sep="")
## run ICA
resJade1 <- runICA(X=dat1, nbComp=3, method = "JADE")
resJade2 <- runICA(X=dat2, nbComp=3, method = "JADE")
## build params
params <- buildMineICAParams(resPath="toy/")
## build IcaSet object
icaSettoy1 <- buildIcaSet(params=params, A=data.frame(resJade1$A), S=data.frame(resJade1$S),
dat=dat1, alreadyAnnot=TRUE)$icaSet
icaSettoy2 <- buildIcaSet(params=params, A=data.frame(resJade2$A), S=data.frame(resJade2$S),
dat=dat2, alreadyAnnot=TRUE)$icaSet
icaSets <- list(icaSettoy1, icaSettoy2)
resCompareAn <- compareAn(icaSets=list(icaSettoy1,icaSettoy2), labAn=c("toy1","toy2"),
type.corr="pearson", level="genes", cutoff_zval=0)
## Build a graph where edges correspond to maximal correlation value (useVal="cor"),
dataGraph <- compareAn2graphfile(listPairCor=resCompareAn, useMax=TRUE, useVal="cor", file="myGraph.txt")
## construction of the data.frame with the node description
nbComp <- rep(3,2) #each IcaSet contains 3 components
nbAn <- 2 # we are comparing 2 IcaSets
# labels of components created as comp*i*
labComp <- foreach(icaSet=icaSets, nb=nbComp, an=1:nbAn) %do% {
paste(rep("comp",sum(nb)),1:nbComp(icaSet),sep = "")}
# creation of the data.frame with the node description
nodeDescr <- nodeAttrs(nbAn = nbAn, nbComp = nbComp, labComp = labComp,
labAn = c("toy1","toy2"), file = "nodeInfo.txt")
## Plot correlation graph, slightly move the attached nodes to make the cliques visible
## use tkplot=TRUE to have an interactive graph
res <- plotCorGraph(title = "Compare toy 1 and 2", dataGraph = dataGraph, nodeName = "indComp", tkplot = FALSE,
nodeAttrs = nodeDescr, edgeWeight = "cor", nodeShape = "labAn", reciproCol = "reciprocal")
## Not run:
## load two microarray datasets
library(breastCancerMAINZ)
library(breastCancerVDX)
data(mainz)
data(vdx)
## Define a function used to build two examples of IcaSet objects
treat <- function(es, annot="hgu133a.db") {
es <- selectFeatures_IQR(es,10000)
exprs(es) <- t(apply(exprs(es),1,scale,scale=FALSE))
colnames(exprs(es)) <- sampleNames(es)
resJade <- runICA(X=exprs(es), nbComp=10, method = "JADE", maxit=10000)
resBuild <- buildIcaSet(params=buildMineICAParams(), A=data.frame(resJade$A), S=data.frame(resJade$S),
dat=exprs(es), pData=pData(es), refSamples=character(0),
annotation=annot, typeID= typeIDmainz,
chipManu = "affymetrix", mart=mart)
icaSet <- resBuild$icaSet
}
## Build the two IcaSet objects
icaSetMainz <- treat(mainz)
icaSetVdx <- treat(vdx)
icaSets <- list(icaSetMainz, icaSetVdx)
labAn <- c("Mainz", "Vdx")
## correlations between gene projections of each pair of IcaSet
resCompareAn <- compareAn(icaSets = icaSets, level = "genes", type.corr= "pearson",
labAn = labAn, cutoff_zval=0)
## construction of the correlation graph using previous output
dataGraph <- compareAn2graphfile(listPairCor=resCompareAn, useMax=TRUE, file="corGraph.txt")
## construction of the data.frame with the node description
nbComp <- rep(10,2) #each IcaSet contains 10 components
nbAn <- 2 # we are comparing 2 IcaSets
# labels of components created as comp*i*
labComp <- foreach(icaSet=icaSets, nb=nbComp, an=1:nbAn) %do% {
paste(rep("comp",sum(nb)),1:nbComp(icaSet),sep = "")}
# creation of the data.frame with the node description
nodeDescr <- nodeAttrs(nbAn = nbAn, nbComp = nbComp, labComp = labComp,
labAn = labAn, file = "nodeInfo.txt")
## Plot correlation graph, slightly move the attached nodes to make the cliques visible
res <- plotCorGraph(title = "Compare two ICA decomsitions obtained on \n two
microarray-based data of breast tumors", dataGraph = dataGraph, nodeName = "indComp",
nodeAttrs = nodeDescr, edgeWeight = "cor", nodeShape = "labAn", reciproCol = "reciprocal")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.