Nothing
## ----settings, include = FALSE--------------------------------------------------------------------
options(width = 100)
knitr::opts_chunk$set(collapse = TRUE, comment = "#>",class.source = "whiteCode")
library(dplyr)
## ----sesame, include = FALSE----------------------------------------------------------------------
library(sesameData)
## ---- eval = FALSE--------------------------------------------------------------------------------
# if (!"BiocManager" %in% rownames(installed.packages()))
# install.packages("BiocManager")
# BiocManager::install("MethReg", dependencies = TRUE)
## ----setup, eval = TRUE---------------------------------------------------------------------------
library(MethReg)
## ----workflow, fig.cap = "MethReg workflow", echo = FALSE, fig.width = 13-------------------------
jpeg::readJPEG("workflow_methReg.jpg") %>% grid::grid.raster()
## ----warning=FALSE--------------------------------------------------------------------------------
data("dna.met.chr21")
## -------------------------------------------------------------------------------------------------
dna.met.chr21[1:5,1:5]
## -------------------------------------------------------------------------------------------------
dna.met.chr21.se <- make_dnam_se(
dnam = dna.met.chr21,
genome = "hg38",
arrayType = "450k",
betaToM = FALSE, # transform beta to m-values
verbose = FALSE # hide informative messages
)
## -------------------------------------------------------------------------------------------------
dna.met.chr21.se
SummarizedExperiment::rowRanges(dna.met.chr21.se)[1:4,1:4]
## -------------------------------------------------------------------------------------------------
data("gene.exp.chr21.log2")
gene.exp.chr21.log2[1:5,1:5]
## -------------------------------------------------------------------------------------------------
gene.exp.chr21.se <- make_exp_se(
exp = gene.exp.chr21.log2,
genome = "hg38",
verbose = FALSE
)
gene.exp.chr21.se
SummarizedExperiment::rowRanges(gene.exp.chr21.se)[1:5,]
## ----plot, fig.cap = "Different target linking strategies", echo = FALSE--------------------------
png::readPNG("mapping_target_strategies.png") %>% grid::grid.raster()
## ---- message = FALSE, results = "hide"-----------------------------------------------------------
triplet.promoter <- create_triplet_distance_based(
region = dna.met.chr21.se,
target.method = "genes.promoter.overlap",
genome = "hg38",
target.promoter.upstream.dist.tss = 2000,
target.promoter.downstream.dist.tss = 2000,
motif.search.window.size = 500,
motif.search.p.cutoff = 1e-08,
cores = 1
)
## ---- message = FALSE, results = "hide"-----------------------------------------------------------
# Map probes to genes within 500kb window
triplet.distal.window <- create_triplet_distance_based(
region = dna.met.chr21.se,
genome = "hg38",
target.method = "window",
target.window.size = 500 * 10^3,
target.rm.promoter.regions.from.distal.linking = TRUE,
motif.search.window.size = 500,
motif.search.p.cutoff = 1e-08,
cores = 1
)
## ---- message = FALSE, results = "hide"-----------------------------------------------------------
# Map probes to 5 genes upstream and 5 downstream
triplet.distal.nearby.genes <- create_triplet_distance_based(
region = dna.met.chr21.se,
genome = "hg38",
target.method = "nearby.genes",
target.num.flanking.genes = 5,
target.window.size = 500 * 10^3,
target.rm.promoter.regions.from.distal.linking = TRUE,
motif.search.window.size = 500,
motif.search.p.cutoff = 1e-08,
cores = 1
)
## ---- eval = FALSE--------------------------------------------------------------------------------
# if (!"BiocManager" %in% rownames(installed.packages()))
# install.packages("BiocManager")
# BiocManager::install("remap-cisreg/ReMapEnrich", dependencies = TRUE)
## ---- eval = FALSE--------------------------------------------------------------------------------
# library(ReMapEnrich)
# remapCatalog2018hg38 <- downloadRemapCatalog("/tmp/", assembly = "hg38")
# remapCatalog <- bedToGranges(remapCatalog2018hg38)
## ---- eval = FALSE--------------------------------------------------------------------------------
# #-------------------------------------------------------------------------------
# # Triplets promoter using remap
# #-------------------------------------------------------------------------------
# triplet.promoter.remap <- create_triplet_distance_based(
# region = dna.met.chr21.se,
# genome = "hg19",
# target.method = "genes.promoter.overlap",
# TF.peaks.gr = remapCatalog,
# motif.search.window.size = 500,
# max.distance.region.target = 10^6,
# )
## ---- eval = FALSE--------------------------------------------------------------------------------
# if (!"BiocManager" %in% rownames(installed.packages()))
# install.packages("BiocManager")
# BiocManager::install("dorothea", dependencies = TRUE)
## -------------------------------------------------------------------------------------------------
regulons.dorothea <- dorothea::dorothea_hs
regulons.dorothea %>% head
## -------------------------------------------------------------------------------------------------
rnaseq.tf.es <- get_tf_ES(
exp = gene.exp.chr21.se %>% SummarizedExperiment::assay(),
regulons = regulons.dorothea
)
## ---- message = FALSE, results = "hide"-----------------------------------------------------------
triplet.regulon <- create_triplet_regulon_based(
region = dna.met.chr21.se,
genome = "hg38",
motif.search.window.size = 500,
tf.target = regulons.dorothea,
max.distance.region.target = 10^6 # 1Mbp
)
## -------------------------------------------------------------------------------------------------
triplet.regulon %>% head
## -------------------------------------------------------------------------------------------------
str(triplet.promoter)
triplet.promoter$distance_region_target_tss %>% range
triplet.promoter %>% head
## ----interaction_model, message = FALSE, results = "hide", eval = TRUE----------------------------
results.interaction.model <- interaction_model(
triplet = triplet.promoter,
dnam = dna.met.chr21.se,
exp = gene.exp.chr21.se,
sig.threshold = 0.05,
fdr = TRUE,
filter.correlated.tf.exp.dnam = TRUE,
filter.triplet.by.sig.term = TRUE
)
## -------------------------------------------------------------------------------------------------
# Results for quartile model
results.interaction.model %>% dplyr::select(
c(1,4,5,grep("quant",colnames(results.interaction.model)))
) %>% head
## ----stratified_model, message = FALSE, warning = FALSE, results = "hide", eval = TRUE------------
results.stratified.model <- stratified_model(
triplet = results.interaction.model,
dnam = dna.met.chr21.se,
exp = gene.exp.chr21.se
)
## -------------------------------------------------------------------------------------------------
results.stratified.model %>% head
## ----plot_interaction_model, eval = TRUE, message = FALSE, results = "hide", warning = FALSE------
plots <- plot_interaction_model(
triplet.results = results.interaction.model[1,],
dnam = dna.met.chr21.se,
exp = gene.exp.chr21.se
)
## ---- fig.height = 8, fig.width = 13, eval = TRUE, fig.cap = "An example output from MethReg."----
plots
## ----scenarios, fig.cap = "Scenarios modeled by MethReg.", echo = FALSE, fig.width=13------------
png::readPNG("scenarios.png") %>% grid::grid.raster()
## ----residuals, results = "hide", eval = FALSE----------------------------------------------------
# data("gene.exp.chr21.log2")
# data("clinical")
# metadata <- clinical[,c("sample_type","gender")]
#
# gene.exp.chr21.residuals <- get_residuals(gene.exp.chr21, metadata) %>% as.matrix()
## ---- eval = FALSE--------------------------------------------------------------------------------
# gene.exp.chr21.residuals[1:5,1:5]
## ---- results = "hide", eval = FALSE--------------------------------------------------------------
# data("dna.met.chr21")
# dna.met.chr21 <- make_se_from_dnam_probes(
# dnam = dna.met.chr21,
# genome = "hg38",
# arrayType = "450k",
# betaToM = TRUE
# )
# dna.met.chr21.residuals <- get_residuals(dna.met.chr21, metadata) %>% as.matrix()
## ---- eval = FALSE--------------------------------------------------------------------------------
# dna.met.chr21.residuals[1:5,1:5]
## ---- message = FALSE, results = "hide", eval = FALSE---------------------------------------------
# results <- interaction_model(
# triplet = triplet,
# dnam = dna.met.chr21.residuals,
# exp = gene.exp.chr21.residuals
# )
## -------------------------------------------------------------------------------------------------
regulons.dorothea <- dorothea::dorothea_hs
regulons.dorothea %>% head
## ---- message = FALSE, results = "hide"-----------------------------------------------------------
rnaseq.tf.es <- get_tf_ES(
exp = gene.exp.chr21.se %>% SummarizedExperiment::assay(),
regulons = regulons.dorothea
)
## -------------------------------------------------------------------------------------------------
rnaseq.tf.es[1:4,1:4]
## ---- message = FALSE, results = "hide"-----------------------------------------------------------
regulons.dorothea <- dorothea::dorothea_hs
regulons.dorothea$tf <- MethReg:::map_symbol_to_ensg(
gene.symbol = regulons.dorothea$tf,
genome = "hg38"
)
regulons.dorothea$target <- MethReg:::map_symbol_to_ensg(
gene.symbol = regulons.dorothea$target,
genome = "hg38"
)
split_tibble <- function(tibble, col = 'col') tibble %>% split(., .[, col])
regulons.dorothea.list <- regulons.dorothea %>% na.omit() %>%
split_tibble('tf') %>%
lapply(function(x){x[[3]]})
## ---- message = FALSE, results = "hide", eval = FALSE---------------------------------------------
# library(GSVA)
# rnaseq.tf.es.gsva <- gsva(
# expr = gene.exp.chr21.se %>% SummarizedExperiment::assay(),
# gset.idx.list = regulons.dorothea.list,
# method = "gsva",
# kcdf = "Gaussian",
# abs.ranking = TRUE,
# min.sz = 5,
# max.sz = Inf,
# parallel.sz = 1L,
# mx.diff = TRUE,
# ssgsea.norm = TRUE,
# verbose = TRUE
# )
## ----size = 'tiny'--------------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.