Nothing
# Load Required Packages
for (lib in c(
'dplyr',
'pbapply',
'lmerTest',
'car',
'parallel',
'MuMIn',
'glmmTMB',
'MASS',
'cplm',
'pscl'
)) {
suppressPackageStartupMessages(require(lib, character.only = TRUE))
}
# fit the data using the model selected and applying the correction
fit.data <-
function(
features,
metadata,
model,
formula = NULL,
random_effects_formula = NULL,
correction = "BH",
cores = 1) {
# set the formula default to all fixed effects if not provided
if (is.null(formula))
formula <-
as.formula(paste(
"expr ~ ",
paste(colnames(metadata),
collapse = "+")))
if (!(is.null(random_effects_formula))) {
formula <-
paste(
'. ~',
paste(all.vars(formula)[-1], collapse = ' + '),
'.',
sep = ' + ')
formula <- update(random_effects_formula, formula)
}
#############################################################
# Determine the function and summary for the model selected #
#############################################################
if (model == "LM") {
if (is.null(random_effects_formula)) {
model_function <-
function(formula, data, na.action) {
return(glm(
formula,
data = data,
family = 'gaussian',
na.action = na.action
))
}
summary_function <- function(fit) {
lm_summary <- summary(fit)$coefficients
para <- as.data.frame(lm_summary)[-1, -3]
para$name <- rownames(lm_summary)[-1]
return(para)
}
} else {
model_function <-
function(formula, data, na.action) {
return(lmerTest::lmer(
formula,
data = data,
na.action = na.action))
}
summary_function <- function(fit) {
lm_summary <- coef(summary(fit))
para <- as.data.frame(lm_summary)[-1, -c(3:4)]
para$name <- rownames(lm_summary)[-1]
return(para)
}
}
}
if (model == "SLM") {
# simple "lm" linear model
if (is.null(random_effects_formula)) {
model_function <-
function(formula, data, na.action) {
return(lm(
formula,
data = data,
family = 'gaussian',
na.action = na.action
))
}
summary_function <- function(fit) {
lm_summary <- summary(fit)$coefficients
r2 <- summary(fit)$r.squared
para <- as.data.frame(lm_summary)[-1, -3]
para$name <- rownames(lm_summary)[-1]
para$r2 <- r2
return(para)
}
} else {
#need to be tested
model_function <-
function(formula, data, na.action) {
return(lmerTest::lmer(
formula,
data = data,
na.action = na.action))
}
summary_function <- function(fit) {
lm_summary <- coef(summary(fit))
para <- as.data.frame(lm_summary)[-1, -c(3:4)]
para$name <- rownames(lm_summary)[-1]
para$r2 <- MuMIn::r.squaredGLMM(fit)
return(para)
}
}
}
if (model == "CPLM") {
if (is.null(random_effects_formula)) {
model_function <- cplm::cpglm
summary_function <- function(fit) {
cplm_out <-
capture.output(
cplm_summary <- cplm::summary(fit)$coefficients)
para <- as.data.frame(cplm_summary)[-1, -3]
para$name <- rownames(cplm_summary)[-1]
logging::logdebug(
"Summary output\n%s",
paste(cplm_out, collapse = "\n"))
return(para)
}
} else {
model_function <-
function(formula, data, na.action) {
return(glmmTMB::glmmTMB(
formula,
data = data,
family=glmmTMB::tweedie(link = "log"),
ziformula = ~0,
na.action = na.action
))
}
summary_function <- function(fit) {
glmmTMB_summary <- coef(summary(fit))
para <- as.data.frame(glmmTMB_summary$cond)[-1, -3];
para$name <- rownames(glmmTMB_summary$cond)[-1];
return(para)
}
}
}
if (model == "NEGBIN") {
if (is.null(random_effects_formula)) {
model_function <- MASS::glm.nb
summary_function <- function(fit) {
glm_summary <- summary(fit)$coefficients
para <- as.data.frame(glm_summary)[-1, -3]
para$name <- rownames(glm_summary)[-1]
return(para)
}
} else {
model_function <-
function(formula, data, na.action) {
return(glmmTMB::glmmTMB(
formula,
data = data,
family=glmmTMB::nbinom2(link = "log"),
ziformula = ~0,
na.action = na.action
))
}
summary_function <- function(fit) {
glmmTMB_summary <- coef(summary(fit))
para <- as.data.frame(glmmTMB_summary$cond)[-1, -3];
para$name <- rownames(glmmTMB_summary$cond)[-1];
return(para)
}
}
}
if (model == "ZICP") {
if (is.null(random_effects_formula)) {
model_function <- cplm::zcpglm
summary_function <- function(fit) {
zicp_out <- capture.output(
zicp_summary <- cplm::summary(fit)$coefficients$tweedie)
para <- as.data.frame(zicp_summary)[-1, -3]
para$name <- rownames(zicp_summary)[-1]
logging::logdebug(
"Summary output\n%s",
paste(zicp_out, collapse = "\n"))
return(para)
}
} else {
model_function <-
function(formula, data, na.action) {
return(glmmTMB::glmmTMB(
formula,
data = data,
family=glmmTMB::tweedie(link = "log"),
ziformula = ~1,
na.action = na.action
))
}
summary_function <- function(fit) {
glmmTMB_summary <- coef(summary(fit))
para <- as.data.frame(glmmTMB_summary$cond)[-1, -3]
para$name <- rownames(glmmTMB_summary$cond)[-1]
return(para)
}
}
}
if (model == "ZINB") {
if (is.null(random_effects_formula)) {
model_function <-
function(formula, data, na.action) {
return(pscl::zeroinfl(
formula,
data = data,
dist = "negbin",
na.action = na.action))
}
summary_function <- function(fit) {
pscl_summary <- summary(fit)$coefficients$count
para <-as.data.frame(pscl_summary)[-c(1, (ncol(metadata) + 2)), -3]
para$name <- rownames(pscl_summary)[-c(1, (ncol(metadata) + 2))]
return(para)
}
} else {
model_function <-
function(formula, data, na.action) {
return(glmmTMB::glmmTMB(
formula,
data = data,
family=glmmTMB::nbinom2(link = "log"),
ziformula = ~1,
na.action = na.action
))
}
summary_function <- function(fit) {
glmmTMB_summary <- coef(summary(fit))
para <- as.data.frame(glmmTMB_summary$cond)[-1, -3]
para$name <- rownames(glmmTMB_summary$cond)[-1]
return(para)
}
}
}
#######################################
# Init cluster for parallel computing #
#######################################
cluster <- NULL
if (cores > 1)
{
logging::loginfo("Creating cluster of %s R processes", cores)
cluster <- parallel::makeCluster(cores)
}
##############################
# Apply per-feature modeling #
##############################
outputs <-
pbapply::pblapply(seq_len(ncol(features)), cl = cluster, function(x) {
# Extract Features One by One
featuresVector <- features[, x]
# Fit Model
logging::loginfo(
"Fitting model to feature number %d, %s",
x,
colnames(features)[x])
dat_sub <-
data.frame(expr = as.numeric(featuresVector), metadata)
fit <- tryCatch({
fit1 <-
model_function(
formula,
data = dat_sub,
na.action = na.exclude)
}, error = function(err) {
fit1 <-
try({
model_function(
formula,
data = dat_sub,
na.action = na.exclude)
})
return(fit1)
})
# Gather Output
output <- list()
if (all(!inherits(fit, "try-error"))) {
output$para <- summary_function(fit)
output$residuals <- residuals(fit)
}
else{
logging::logwarn(paste(
"Fitting problem for feature",
x,
"returning NA"))
output$para <-
as.data.frame(matrix(NA,
nrow = ncol(metadata), ncol = 3))
output$para$name <- colnames(metadata)
output$residuals <- NA
}
if (model == 'SLM')
colnames(output$para) <-
c('coef', 'stderr' , 'pval', 'name', 'r2')
else
colnames(output$para) <-
c('coef', 'stderr' , 'pval', 'name')
output$para$feature <- colnames(features)[x]
return(output)
})
# stop the cluster
if (!is.null(cluster))
parallel::stopCluster(cluster)
# bind the results for each feature
paras <-
do.call(rbind, lapply(outputs, function(x) {
return(x$para)
}))
residuals <-
do.call(rbind, lapply(outputs, function(x) {
return(x$residuals)
}))
row.names(residuals) <- colnames(features)
################################
# Apply correction to p-values #
################################
paras$qval <- as.numeric(p.adjust(paras$pval, method = correction))
#####################################################
# Determine the metadata names from the model names #
#####################################################
metadata_names <- colnames(metadata)
# order the metadata names by decreasing length
metadata_names_ordered <-
metadata_names[order(
nchar(metadata_names), decreasing = TRUE)]
# find the metadata name based on the match
# to the beginning of the string
extract_metadata_name <- function(name) {
return(metadata_names_ordered[mapply(
startsWith,
name,
metadata_names_ordered)][1])
}
paras$metadata <- unlist(lapply(paras$name, extract_metadata_name))
# compute the value as the model contrast minus metadata
paras$value <-
mapply(function(x, y) {
if (x == y)
x
else
gsub(x, "", y)
}, paras$metadata, paras$name)
##############################
# Sort by decreasing q-value #
##############################
paras <- paras[order(paras$qval, decreasing = FALSE), ]
paras <-
dplyr::select(
paras,
c('feature', 'metadata', 'value'),
dplyr::everything())
rownames(paras)<-NULL
return(list("results" = paras, "residuals" = residuals))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.