R/compare.R

Defines functions adjustProteinLevel .aggregateFC .onetest extractMeanDiff PTMcompareMeans

Documented in adjustProteinLevel extractMeanDiff PTMcompareMeans

#' Compare mean abundances for all PTM sites across conditions
#'
#' \code{PTMcompareMeans} performs significance analysis for detection of
#' changes in PTM mean abundances between conditions.
#'
#' @param data A list of two elements named \code{PTM} and \code{PROTEIN}. The
#'   \code{PTM} list has four elements: \code{protein} (a string vector of
#'   protein names), \code{site} (a string vector of PTM sites), \code{param}
#'   (a list of model parameter estimates for each site), and \code{df} (a
#'   numeric vector of degrees of freedom for each model). The \code{PROTEIN}
#'   list includes all as in \code{PTM}, except the element \code{site}.
#' @param controls A string vector of control groups in the comparisons.
#' @param cases A string vector of case groups.
#' @param adjProtein A logical. \code{TRUE} performs protein-level adjustment,
#'   \code{FALSE} otherwise. Default is \code{FALSE}.
#'
#' @return A data frame.
#'
#' @examples
#' sim <- PTMsimulateExperiment(
#'     nGroup=2, nRep=2, nProtein=1, nSite=1, nFeature=5,
#'     logAbundance=list(
#'         PTM=list(mu=25, delta=c(0, 1), sRep=0.2, sPeak=0.05),
#'         PROTEIN=list(mu=25, delta=c(0, 1), sRep=0.2, sPeak=0.05)
#'     )
#' )
#' summarized <- PTMsummarize(sim)
#' estimates <- PTMestimate(summarized)
#' PTMcompareMeans(estimates, controls="G_1", cases="G_2")
#'
#' @export
PTMcompareMeans <- function(data, controls, cases, adjProtein=FALSE) {
    # Check PTM estimates
    if (is.null(data[["PTM"]]))
        stop("PTM estimates are missing!")
    elm_site <- c("protein", "site", "param", "df")
    if (!all(elm_site %in% names(data[["PTM"]]))) {
        stop(
            "Please include in the PTM list all the following elements: ",
            paste0(sQuote(elm_site), collapse = ", ")
        )
    }
    if (adjProtein) {
        # Check PROTEIN estimates
        if (is.null(data[["PROTEIN"]]))
            stop("To adjust for protein level, protein estimates are required")
        elm_prot <- c("protein", "param", "df")
        if (!all(elm_prot %in% names(data[["PROTEIN"]]))) {
            stop(
                "Include in the PROTEIN list all the following elements: ",
                paste0(sQuote(elm_site), collapse = ", ")
            )
        }
    }
    if (!(is.character(controls) && is.character(cases)))
        stop("Provide the control and case groups as character vectors")
    if (length(controls) != length(cases))
        stop("The lengths of 'controls' and 'cases' should be identical")

    # Protein-level correction
    res <- extractMeanDiff(data[["PTM"]], controls, cases, perProtein = FALSE)
    if (adjProtein) {
        res_prot <- extractMeanDiff(
            data[["PROTEIN"]], controls, cases, perProtein = TRUE
        )
        res <- adjustProteinLevel(res, res_prot)
    }

    # Multiple testing adjustment
    q <- vector("double", nrow(res))
    p <- res$pvalue
    l <- res$Label
    ul <- unique(l)
    for (i in seq_along(ul)) {
        q[l == ul[i]] <- p.adjust(p[l == ul[i]], method = "BH")
    }
    res$adj.pvalue <- q

    res
}


#' Compare mean abundances for PTM sites (or proteins) across conditions
#'
#' \code{extractMeanDiff} performs significance analysis for detection of
#' changes in PTM mean abundances between conditions.
#'
#' @param data A list of abundance estimates with the following elements:
#'   \code{protein}, \code{site}, \code{param}, and \code{df}. \code{site} may
#'   be excluded when performing per-protein analysis (\code{perProtein} is
#'   \code{TRUE}).
#' @param controls A string vector of control groups in the comparisons.
#' @param cases A string vector of case groups.
#' @param perProtein A logical. \code{TRUE} ignores the site-level information
#'   for PTM and considers protein as a whole, \code{FALSE} performs site-level
#'   analysis. Default is \code{FALSE}.
#'
#' @examples
#' sim <- PTMsimulateExperiment(
#'     nGroup=2, nRep=2, nProtein=1, nSite=1, nFeature=5,
#'     logAbundance=list(
#'         PTM=list(mu=25, delta=c(0, 1), sRep=0.2, sPeak=0.05),
#'         PROTEIN=list(mu=25, delta=c(0, 1), sRep=0.2, sPeak=0.05)
#'     )
#' )
#' summarized <- PTMsummarize(sim)
#' estimates <- PTMestimate(summarized)
#' extractMeanDiff(estimates[["PTM"]], controls="G_1", cases="G_2", FALSE)
#' extractMeanDiff(estimates[["PROTEIN"]], controls="G_1", cases="G_2", TRUE)
#'
#' @return A data frame.
#'
#' @export
extractMeanDiff <- function(data, controls, cases, perProtein=FALSE) {
    if (!perProtein && is.null(data[["site"]]))
        stop("Site-level analysis requires the information of PTM site")
    params <- tibble(
        protein = data[["protein"]], param = data[["param"]], df = data[["df"]]
    )
    if (!perProtein) params$site <- data[["site"]]  # One row per site
    w_batch <- "batch" %in% names(data)
    if (w_batch) {
        params$batch <- data[["batch"]]
        nb <- length(unique(data[["batch"]]))
        if (perProtein) {
            cnt <- count(params, .data$protein)
        } else {
            cnt <- count(params, .data$protein, .data$site)
        }
        cnt <- cnt[cnt$n == nb, ]
        params <- semi_join(params, cnt)
    }

    res <- vector("list", length(controls))
    for (i in seq_along(controls)) {
        ctrl <- controls[i]
        case <- cases[i]
        tests <- Map(.onetest, params$param, params$df, ctrl, case)
        nores <- vapply(tests, is.null, logical(1))
        onectrx <- bind_rows(tests)
        onectrx$Protein <- params$protein[!nores]
        if (!perProtein) onectrx$Site <- params$site[!nores]
        if (w_batch) {
            if (perProtein) {
                cnt <- count(onectrx, .data$Protein)
            } else {
                cnt <- count(onectrx, .data$Protein, .data$Site)
            }
            cnt <- cnt[cnt$n == nb, ]
            onectrx <- semi_join(onectrx, cnt)
            onectrx <- onectrx[, !(names(onectrx) %in% c("Tvalue", "pvalue"))]
            nested <- nest(onectrx, data = one_of(c("log2FC", "SE", "DF")))
            nested$ave <- lapply(nested$data, .aggregateFC)
            nested <- nested[, !(names(nested) %in% c("data"))]
            onectrx <- unnest(nested, one_of("ave"))
        }
        cols <- names(onectrx)
        is_first <- cols %in% c("Protein", "Site")
        onectrx <- onectrx[, c(cols[is_first], cols[!is_first])]
        res[[i]] <- onectrx
    }
    bind_rows(res)
}


#' @keywords internal
.onetest <- function(param, df, ctrl, case) {
    if (!any(c(ctrl, case) %in% param$group)) {
        return(NULL)
    } else if (sum(c(ctrl, case) %in% param$group) == 1) {
        res <- tibble(
            Label = paste(case, ctrl, sep = " vs "),
            log2FC = ifelse(case %in% param$group, Inf, -Inf),
            SE = NA, Tvalue = NA, DF = NA, pvalue = NA
        )
    } else {
        param_case <- param[param$group == case, ]
        param_ctrl <- param[param$group == ctrl, ]
        log2fc <- param_case$estimate - param_ctrl$estimate
        stderr <- sqrt(param_case$std.error ^ 2 + param_ctrl$std.error ^ 2)
        tval <- log2fc / stderr
        pval <- 2 * pt(abs(tval), df, lower.tail = FALSE)
        res <- tibble(
            Label = paste(case, ctrl, sep = " vs "), log2FC = log2fc,
            SE = stderr, Tvalue = tval, DF = df, pvalue = pval
        )
    }
    res
}


#' @keywords internal
.aggregateFC <- function(data) {
    log2fc <- mean(data$log2FC)
    s2 <- data$SE ^ 2
    stderr <- sqrt(sum(s2)) / nrow(data)
    numer <- sum(s2) ^ 2
    denom <- sum(s2 ^ 2 / data$DF)
    df <- numer / denom
    tval <- log2fc / stderr
    pval <- 2 * pt(abs(tval), df, lower.tail = FALSE)

    tibble(log2FC = log2fc, SE = stderr, Tvalue = tval, DF = df, pvalue = pval)
}


#' Adjust differential analysis result with respect to protein abundance
#'
#' \code{adjustProteinLevel} performs the adjustment with respect to protein
#' abundance.
#'
#' @param diffSite A data frame for the differential analysis result of PTMs,
#'   returned by the function \code{extractMeanDiff} with the option
#'   \code{perProtein=FALSE}. The data frame contains columns of
#'   \code{Protein}, \code{Site}, \code{Label}, \code{log2FC}, \code{SE},
#'   \code{Tvalue}, \code{DF}, and \code{pvalue}.
#' @param diffProtein A data frame for the differential analysis result of
#'   proteins, returned by the function \code{extractMeanDiff} with the option
#'   \code{perProtein=TRUE}. The data frame contains columns of
#'   \code{Protein}, \code{Label}, \code{log2FC}, \code{SE}, \code{Tvalue},
#'   \code{DF}, and \code{pvalue}.
#'
#' @return A data frame.
#'
#' @examples
#' sim <- PTMsimulateExperiment(
#'     nGroup=2, nRep=2, nProtein=1, nSite=1, nFeature=5,
#'     logAbundance=list(
#'         PTM=list(mu=25, delta=c(0, 1), sRep=0.2, sPeak=0.05),
#'         PROTEIN=list(mu=25, delta=c(0, 1), sRep=0.2, sPeak=0.05)
#'     )
#' )
#' summarized <- PTMsummarize(sim)
#' estimates <- PTMestimate(summarized)
#' res <- extractMeanDiff(estimates[["PTM"]], "G_1", "G_2", FALSE)
#' res_prot <- extractMeanDiff(estimates[["PROTEIN"]], "G_1", "G_2", TRUE)
#' adjustProteinLevel(res, res_prot)
#'
#' @export
adjustProteinLevel <- function(diffSite, diffProtein) {
    diffRef <- diffProtein[, c("Protein", "Label", "log2FC", "SE", "DF")]
    names(diffRef)[names(diffRef) == "log2FC"] <- "log2FC_ref"
    names(diffRef)[names(diffRef) == "SE"] <- "SE_ref"
    names(diffRef)[names(diffRef) == "DF"] <- "DF_ref"
    joined <- inner_join(diffSite, diffRef)

    missing_ctrl <- joined[joined$log2FC == Inf, ]  # PTM missing in control
    missing_case <- joined[joined$log2FC == -Inf, ] # PTM missing in case
    res_mctrl <- tibble(
        Protein = missing_ctrl$Protein,
        Site = missing_ctrl$Site, Label = missing_ctrl$Label,
        log2FC = Inf, SE = NA, Tvalue = NA, DF = NA, pvalue = NA
    )
    res_mcase <- tibble(
        Protein = missing_case$Protein,
        Site = missing_case$Site, Label = missing_case$Label,
        log2FC = -Inf, SE = NA, Tvalue = NA, DF = NA, pvalue = NA
    )

    idx_full <- abs(joined$log2FC) != Inf & abs(joined$log2FC_ref) != Inf
    full <- joined[idx_full, ]
    log2fc <- full$log2FC - full$log2FC_ref
    s2 <- full$SE ^ 2
    s2_ref <- full$SE_ref ^ 2
    stderr <- sqrt(s2 + s2_ref)
    numer <- (s2 + s2_ref) ^ 2
    denom <- (s2 ^ 2 / full$DF + s2_ref ^ 2 / full$DF_ref)
    df <- numer / denom
    tval <- log2fc / stderr
    pval <- 2 * pt(abs(tval), df, lower.tail = FALSE)
    res_full <- tibble(
        Protein = full$Protein, Site = full$Site, Label = full$Label,
        log2FC = log2fc, SE = stderr, Tvalue = tval, DF = df, pvalue = pval
    )

    bind_rows(res_full, res_mctrl, res_mcase)
}

Try the MSstatsPTM package in your browser

Any scripts or data that you put into this service are public.

MSstatsPTM documentation built on Nov. 8, 2020, 5:49 p.m.