R/utils_clean_features.R

Defines functions .adjustIntensities .summarizeMultiplePSMs .aggregatePSMstoPeptideIons .combine .handleSingleFeaturePerProtein .summarizeMultipleMeasurements .filterFewMeasurements .cleanByFeature

Documented in .adjustIntensities .aggregatePSMstoPeptideIons .cleanByFeature .filterFewMeasurements .handleSingleFeaturePerProtein .summarizeMultipleMeasurements .summarizeMultiplePSMs

#' Perform by-feature operations.
#' @param input `data.table` preprocessed by one of the cleanRaw* functions.
#' @param feature_columns character vector of names of columns that define features.
#' @param cleaning_control named list of two or three elements. 
#' See the documentation for `MSstatsImport` for details.
#' @return `data.table`
#' @keywords internal 
.cleanByFeature = function(input, feature_columns, cleaning_control) {
    if (is.element("Channel", colnames(input))) {
        input = .filterFewMeasurements(
            input, 0, 
            cleaning_control[["remove_features_with_few_measurements"]],
            unique(c("PSM", "Run")))
        input = .aggregatePSMstoPeptideIons(
            input, feature_columns, 
            cleaning_control[["summarize_multiple_psms"]])
        input
    } else {
        summary_str = deparse(cleaning_control[["summarize_multiple_psms"]])
        summary_str = ifelse(grepl("sum", summary_str), "sum", "max")
        
        input = .summarizeMultipleMeasurements(
            input, cleaning_control[["summarize_multiple_psms"]],
            c(feature_columns, "Run"))
        msg = paste("** Multiple measurements in a feature and a run",
                    "are summarized by summaryforMultipleRows:", summary_str)
        getOption("MSstatsLog")("INFO", msg)
        getOption("MSstatsMsg")("INFO", msg)
        input = .filterFewMeasurements(
            input, 0, 
            cleaning_control[["remove_features_with_few_measurements"]],
            feature_columns)
    }
    input
}


#' Remove features with a small number of (non-missing) measurements across runs
#' @param input `data.table` pre-processed by one of the .cleanRaw* functions.
#' @param min_intensity minimum intensity that will be considered non-missing.
#' @param remove_few logical, if TRUE, features that have less than three 
#' measurements will be removed. If FALSE, only features with all missing runs
#' will be removed.
#' @param features_columns chr, vector of names of columns that define features. 
#' @return data.table
#' @keywords internal
.filterFewMeasurements = function(input, min_intensity, remove_few,
                                  feature_columns = NULL) {
    Intensity = n_obs = NULL
    
    if (is.null(feature_columns)) {
        if (is.element("Channel", colnames(input))) {
            feature_columns = c("PSM", "Run")
        } else {
            feature_columns = intersect(colnames(input),
                                        c("PeptideModifiedSequence", "Charge",
                                          "PeptideSequence", "PrecursorCharge",
                                          "FragmentIon", "ProductCharge"))
        }
    }
    
    input[, n_obs := sum(Intensity > min_intensity, na.rm = TRUE),
          by = feature_columns]
    
    what = ifelse(is.element("Channel", colnames(input)),
                  "channels within each run", "runs")
    if (remove_few) {
        cutoff = 2
        msg = paste("** Features with one or two measurements across", 
                    what, "are removed.")
    } else {
        cutoff = 0
        msg = paste("** Features with all missing measurements across", 
                    what, "are removed.")
    }
    input = input[n_obs > cutoff]
    getOption("MSstatsLog")("INFO", msg)
    getOption("MSstatsMsg")("INFO", msg)
    input[, colnames(input) != "n_obs", with = FALSE]
}


#' Summarize multiple measurements per feature in a single run
#' @param input `data.table` pre-processed by one of the .cleanRaw* functions.
#' @param aggregator function that will be used to aggregate duplicated values.
#' @param feature_columns chr, vector of names of columns that define features. 
#' @return `data.table`
#' @keywords internal
.summarizeMultipleMeasurements = function(input, aggregator, feature_columns) {
    Intensity = isZero = NULL
    
    info = unique(input[, intersect(colnames(input), 
                                    c("StandardType", "ProteinName", 
                                      "PeptideModifiedSequence", "Charge",
                                      "PeptideSequence", "PrecursorCharge",
                                      "IsotopeLabelType")), 
                        with = FALSE])
    if (is.element("isZero", colnames(input))) {
        input = input[, list(Intensity = aggregator(Intensity, na.rm = TRUE),
                             isZero = all(isZero | is.na(Intensity)) &
                                 !all(is.na(Intensity))), 
                      by = feature_columns]
    } else {
        input = input[, list(Intensity = aggregator(Intensity, na.rm = TRUE)), 
                      by = feature_columns]
    }
    merge(input, info, 
          by = intersect(colnames(input), colnames(info)), sort = FALSE)
}


#' Remove proteins only identified by a single feature
#' @param input `data.table` pre-processed by one of the .cleanRaw* functions.
#' @param remove_single_feature lgl, if TRUE, proteins with a single feature
#' will be removed.
#' @return `data.table`
#' @keywords internal
.handleSingleFeaturePerProtein = function(input, remove_single_feature) {
    feature_count = feature = NULL
    
    if (remove_single_feature) {
        feature_columns = intersect(c("PeptideSequence", "PrecursorCharge",
                                      "FragmentIon", "ProductCharge", "Charge"),
                                    colnames(input))
        input[, feature := do.call(".combine", .SD), .SDcols = feature_columns]
        input[, feature_count := uniqueN(feature), by = "ProteinName"]
        input = input[feature_count > 1]
        input = input[, !(colnames(input) %in% c("feature_count", "feature")), 
                      with = FALSE]
        getOption("MSstatsLog")("INFO", 
                                "Proteins with a single feature are removed.")
        getOption("MSstatsMsg")("INFO", 
                                "Proteins with a single feature are removed.")
    }
    input
}


#' @keywords internal
.combine = function(...) {
    paste(..., sep = "_")  
} 

#' Aggregate multiple PSMs to a single peptide ion.
#' @param input data.table preprocessed by one of the cleanRaw* functions.
#' @param feature_columns chr, names of columns that define features.
#' @param summary_function function that will be used to aggregate intensities
#' if needed.
#' @return data.table
#' @keywords internal
.aggregatePSMstoPeptideIons = function(input, feature_columns, 
                                       summary_function = sum
) {
    keep = n_psms = PSM = Intensity = NULL
    
    feature_columns = unique(c(feature_columns, "Run"))
    input[, n_psms := data.table::uniqueN(PSM), by = feature_columns]
    
    if (any(input$n_psms > 1)) {
        input_duplicates = input[n_psms != 1]
        input = input[n_psms == 1]
        if (nrow(input_duplicates) > 0) {
            cols = intersect(colnames(input_duplicates),
                             c("PSM", "Channel", "Intensity", "Run", "Score",
                               "IsolationInterference", "IonsScore", "n_psms"))
            input_duplicates[, keep := .summarizeMultiplePSMs(.SD, 
                                                              summary_function),
                             by = feature_columns, .SDcols = cols]
        }
        input = rbind(input, input_duplicates, fill = TRUE)
        cols = intersect(colnames(input),
                         c("PSM", "Channel", "Intensity", "Run", "Score",
                           "IsolationInterference", "IonsScore", "n_psms"))
        input[, keep := .summarizeMultiplePSMs(.SD, summary_function), 
              by = feature_columns, .SDcols = cols]
        input = input[(PSM == keep) | is.na(keep), 
                      !(colnames(input) %in% c("keep", "feature")), 
                      with = FALSE]
        input[, n_psms := data.table::uniqueN(PSM), by = feature_columns]
        if (any(input$n_psms > 1)) {
            input = input[, list(Intensity = mean(Intensity, na.rm = TRUE)),
                          by = setdiff(colnames(input), 
                                       c("PSM", "Intensity", "n_psms",
                                         "IsolationInterference", "Score",
                                         "IonsScore"))]
        }
    }
    input[, PSM := do.call(".combine", .SD), 
          .SDcols = c("PeptideSequence", "PrecursorCharge")]
    msg = "** PSMs have been aggregated to peptide ions."
    getOption("MSstatsLog")("INFO", msg)
    getOption("MSstatsMsg")("INFO", msg)
    input[, colnames(input) != "n_psms", with = FALSE]
}

#' Pick one PSM from a data.table of several PSMs.
#' @param input data.table preprocessed by one of the .cleanRaw* functions.
#' @param summary_function function that will be used to aggregate intensities
#' if needed.
#' @return character - label of a chosen PSM
#' @keywords internal
.summarizeMultiplePSMs = function(input, summary_function) {
    Intensity = Score = IsolationInterference = IonsScore = PSM = NULL
    
    if (all(unique(input$n_psms) == 1)) {
        return(unique(input$PSM))
    } else {
        nonmissing_counts = input[, list(n_nonmissing = sum(!is.na(Intensity))),
                                  by = c("PSM")]
        is_max = nonmissing_counts$n_nonmissing == max(nonmissing_counts$n_nonmissing, 
                                                       na.rm = TRUE)
        if (sum(is_max, na.rm = TRUE) == 1) {
            return(nonmissing_counts$PSM[which.max(nonmissing_counts$n_nonmissing)])
        } else {
            input = input[PSM %in% unique(nonmissing_counts$PSM[is_max])]
        }
        
        if ("Score" %in% colnames(input)) {
            by_score = input[, list(score = unique(Score)),
                             by = c("PSM")]
            is_max = by_score$score == max(by_score$score, na.rm = TRUE)
            if (sum(is_max, na.rm = TRUE) == 1) {
                return(by_score$PSM[which.max(by_score$score)])
            } else {
                input = input[PSM %in% unique(by_score$PSM[is_max])]
            }
        }
        
        if ("IsolationInterference" %in% colnames(input) &
            !any(is.na(input$IsolationInterference))) {
            by_score = input[, list(score = unique(IsolationInterference)),
                             by = c("PSM")]
            is_min = by_score$score == min(by_score$score, na.rm = TRUE)
            if (sum(is_min, na.rm = TRUE) == 1) {
                return(by_score$PSM[which.min(by_score$score)])
            } else {
                input = input[PSM %in% unique(by_score$PSM[is_min])]
            }
        }
        
        if ("IonsScore" %in% colnames(input) & !any(is.na(input$IonsScore))) {
            by_score = input[, list(score = unique(IonsScore)),
                             by = c("PSM")]
            is_max = by_score$score == max(by_score$score, na.rm = TRUE)
            if (sum(is_max, na.rm = TRUE) == 1) {
                return(by_score$PSM[which.max(by_score$score)])
            } else {
                input = input[PSM %in% unique(by_score$PSM[is_max])]
            }
        }
        
        by_max = input[, list(Intensity = summary_function(Intensity, 
                                                           na.rm = TRUE)),
                       by = c("PSM")]
        is_max = by_max$Intensity == max(by_max$Intensity, na.rm = TRUE)
        if (sum(is_max, na.rm = TRUE) == 1) {
            return(by_max$PSM[which.max(by_max$Intensity)])
        } else {
            return(NA)
        }
    }
}


#' Fix invalid intensities: infinite to NA, between 0 and 1 to 0
#' @param input data.table
#' @return data.table
#' @keywords internal
.adjustIntensities = function(input) {
    Intensity = isZero = NULL
    
    if (is.element("isZero", colnames(input))) {
        input[, isZero := ifelse(Intensity > 0 & Intensity <= 1, TRUE, isZero)]
    }
    input[, Intensity := ifelse(is.finite(Intensity), Intensity, NA)]
    input[, Intensity := ifelse(Intensity > 0 & Intensity <= 1, 0, Intensity)]
}

Try the MSstatsConvert package in your browser

Any scripts or data that you put into this service are public.

MSstatsConvert documentation built on Nov. 8, 2020, 5:49 p.m.