Nothing
## evidence : evidence.txt
## annotation : annotation.txt - Raw.file, Condition, BioReplicate, Run, (IsotopeLabelType)
## proteinGroups : proteinGroups.txt . if proteinGroups=NULL, use 'Proteins'. if not, use proteinGroups information for matching Protein group ID
## proteinID : Proteins or Leading.razor.protein
## useUniquePeptide : remove peptides that are assigned for more than one proteins. We assume to use unique peptide for each protein.
## summaryforMultipleRows : max or sum - when there are multiple measurements for certain feature and certain fun, use highest or sum of all.
## fewMeasurements : if 1 or 2 measurements across runs per feature, 'remove' will remove those featuares. It can affected for unequal variance analysis.
## remove_m_sequencepeptides : remove the peptides including 'M' sequence
## experiment : "DDA" or "SILAC"
#' @export
MaxQtoMSstatsFormat <- function(evidence,
annotation,
proteinGroups,
proteinID="Proteins",
useUniquePeptide=TRUE,
summaryforMultipleRows=max,
fewMeasurements="remove",
removeMpeptides=FALSE,
removeOxidationMpeptides=FALSE,
removeProtein_with1Peptide=FALSE){
if (is.null(fewMeasurements)) {
stop('** Please select \'remove\' or \'keep\' for \'fewMeasurements\'.')
}
if (!is.element(fewMeasurements, c('remove', 'keep'))) {
stop('** Please select \'remove\' or \'keep\' for \'fewMeasurements\'.')
}
if (!is.element(proteinID, c('Proteins', 'Leading.razor.protein'))) {
stop('** Please select \'Proteins\' or \'Leading.razor.proteins\' for \'proteinID\'.')
}
experiment <- "DDA"
## evidence.txt file
infile <- evidence
## annotation.txt : Raw.file, Condition, BioReplicate, (IsotopeLabelType)
annot <- annotation
## check annotation
required.annotation <- c('Raw.file', 'Condition', 'BioReplicate', 'IsotopeLabelType')
if (!all(required.annotation %in% colnames(annot))) {
missedAnnotation <- which(!(required.annotation %in% colnames(annot)))
stop(paste("**", toString(required.annotation[missedAnnotation]),
"is not provided in Annotation. Please check the annotation file."))
}
## check annotation information
## get annotation
annotinfo <- unique(annot[, c("Raw.file", "Condition", 'BioReplicate')])
## Each Run should has unique information about condition and bioreplicate
check.annot <- xtabs(~Raw.file, annotinfo)
if ( any(check.annot > 1) ) {
stop('** Please check annotation. Each MS run (Raw.file) can\'t have multiple conditions or BioReplicates.' )
}
################################################
## 1.1 remove contaminant, reverse proteinID
## Contaminant, Reverse column in evidence
if (is.element("Contaminant", colnames(infile)) &
is.element("+", unique(infile$Contaminant))) {
infile <- infile[-which(infile$Contaminant %in% "+"), ]
}
if (is.element("Potential.contaminant", colnames(infile)) &
is.element("+", unique(infile$Potential.contaminant))) {
infile <- infile[-which(infile$Potential.contaminant %in% "+"), ]
}
if (is.element("Reverse", colnames(infile)) &
is.element("+", unique(infile$Reverse))) {
infile <- infile[-which(infile$Reverse %in% "+"), ]
}
## ? Only.identified.by.site column in proteinGroupID? : sometimes, it is not in evidence.txt
if (is.element("Only.identified.by.site", colnames(infile)) &
is.element("+", unique(infile$Only.identified.by.site))) {
infile <- infile[-which(infile$Only.identified.by.site %in% "+"), ]
}
message('** + Contaminant, + Reverse, + Only.identified.by.site, proteins are removed.')
################################################
## 1.1.2 matching proteinGroupID protein list
## need to check proteinGroupID in evidence and proteinGroup.txt the same
## 'id' in proteinGroups.txt vs 'Protein.group.IDs' in infile
## possible to have some combination in Protein.group.IDs in infile, such as 64;1274;1155;1273 instead of 64, 1274.. separately.
## combination of some ids seems not to be used for intensity
## 2015/02/03
## first, remove contaminants
if (is.element("Contaminant", colnames(proteinGroups)) &
is.element("+",unique(proteinGroups$Contaminant))) {
proteinGroups <- proteinGroups[-which(proteinGroups$Contaminant %in% "+"), ]
}
if (is.element("Potential.contaminant", colnames(proteinGroups)) &
is.element("+",unique(proteinGroups$Potential.contaminant))) {
proteinGroups <- proteinGroups[-which(proteinGroups$Potential.contaminant %in% "+"), ]
}
if (is.element("Reverse", colnames(proteinGroups)) &
is.element("+",unique(proteinGroups$Reverse))) {
proteinGroups <- proteinGroups[-which(proteinGroups$Reverse %in% "+"), ]
}
## ? Only.identified.by.site column in proteinGroupID? : sometimes, it is not in evidence.txt
if (is.element("Only.identified.by.site", colnames(proteinGroups)) &
is.element("+", unique(proteinGroups$Only.identified.by.site))) {
proteinGroups <- proteinGroups[-which(proteinGroups$Only.identified.by.site %in% "+"), ]
}
tempprotein <- proteinGroups
## then take proteins which are included
infile <- infile[which(infile$Protein.group.IDs %in% unique(tempprotein$id)), ]
## then use 'protein.IDs' in proteinGroups.txt
## because if two 'proteins' in evidence.txt are used in one protein ID, need to use certain protein name in infile.
## for example, protein.IDs in proteinGroups.txt are P05204;O00479. but, two 'proteins in evidence.txt, such as P05204;O00479, and P05204.
tempname <- unique(tempprotein[,c("Protein.IDs", "id")])
colnames(tempname) <- c("uniqueProteins", "Protein.group.IDs")
infile <- merge(infile, tempname, by="Protein.group.IDs")
## get useful information
## ? can remove Retention.time column later
if (experiment == "SILAC") {
infile <- infile[c("uniqueProteins", "Protein.group.IDs", "Sequence",
"Modified.sequence", "Charge", "Raw.file",
"Intensity.L", "Intensity.H", "Retention.time", "id")]
infile.l <- infile[, !(colnames(infile) %in% "Intensity.H")]
infile.h <- infile[, !(colnames(infile) %in% "Intensity.L")]
colnames(infile.l)[colnames(infile.l) == "Intensity.L"] <- "Intensity"
colnames(infile.h)[colnames(infile.h) == "Intensity.H"] <- "Intensity"
## new IsotopeLabelType column
infile.l$IsotopeLabelType <- "L"
infile.h$IsotopeLabelType <- "H"
infile <- rbind(infile.l, infile.h)
rm(infile.l)
rm(infile.h)
} else {
get.column <- c("Protein.group.IDs",
"Sequence", "Modified.sequence", "Modifications", "Charge",
"Raw.file", "Intensity", "Retention.time", "id")
if (proteinID == 'Proteins') {
get.column <- c(get.column, 'uniqueProteins')
} else {
get.column <- c(get.column, 'Leading.razor.protein')
}
infile <- infile[, get.column]
}
if (proteinID == 'Proteins') {
colnames(infile)[colnames(infile) == "uniqueProteins"] <- "Proteins"
} else {
colnames(infile)[colnames(infile) == "Leading.razor.protein"] <- "Proteins"
}
## remove "_" at the beginning and end
infile$Modified.sequence <- gsub("_", "", infile$Modified.sequence)
################################################
## 1.2 remove the peptides including M sequence
if (removeMpeptides) {
remove_m_sequence <- unique(infile[grep("M", infile$Modified.sequence), "Modified.sequence"])
if (length(remove_m_sequence) > 0) {
infile <- infile[-which(infile$Modified.sequence %in% remove_m_sequence), ]
}
message('** Peptides including M in the sequence are removed.')
}
if (removeOxidationMpeptides) {
remove_oxim_sequence <- unique(infile[grep("Oxidation", infile$Modifications), "Modifications"])
if (length(remove_oxim_sequence) > 0) {
infile <- infile[-which(infile$Modifications %in% remove_oxim_sequence), ]
}
message('** Peptides including oxidation (M) in the sequence are removed.')
}
################################################
## 2. remove peptides which are used in more than one protein
## we assume to use unique peptide
################################################
if (useUniquePeptide) {
pepcount <- unique(infile[, c("Proteins","Modified.sequence")]) ## Protein.group.IDs or Sequence
pepcount$Modified.sequence <- factor(pepcount$Modified.sequence)
## count how many proteins are assigned for each peptide
structure <- aggregate(Proteins ~ ., data=pepcount, length)
remove_peptide <- structure[structure$Proteins != 1, ]
## remove the peptides which are used in more than one protein
if (length(remove_peptide$Proteins != 1) != 0) {
infile <- infile[-which(infile$Modified.sequence %in% remove_peptide$Modified.sequence), ]
message('** Peptides, that are used in more than one proteins, are removed.')
}
}
################################################
## 3. duplicated(multiple) rows for certain feature and certain runs
## 3.1) take highest intensity
## 3.2) take sum of intensities
################################################
## Let's find duplicates
## first remove NA intensity
infile <- infile[!is.na(infile$Intensity), ]
#########################
### 2.1) general Label-free : one measurement for a feature and a run
if (experiment == "DDA") {
## count the number of intensities for feature by runs
##infile$Feature <- paste(infile$Modified.sequence, infile$Charge, sep="_")
##structure <- dcast(Feature ~ Raw.file, data=infile, value.var='Intensity')
##flagduplicate = sum(structure>1)>0
## take the highest intensity among duplicated or sum of intensities
## summaryforMultipleRows="max" or "sum
infile_w <- .cast_maxquant_to_wide_glf(infile, aggregateFun=summaryforMultipleRows)
## *** remove features which has less than 2 measurements across runs
## !!! for MSstats v3, we don't need to remove them.
## good to remove before reformatting to long-format
if (fewMeasurements == "remove") {
infile_w <- .remove_feature_with_few(infile_w)
message('** Peptide and charge, that have 1 or 2 measurements across runs, are removed.')
}
## then, go back to long-format
## good to fill rows with NAs, then now can have balanced data-structure.
infile_l <- .melt_maxquant_to_long_glf(infile_w)
## need to set 'IsotopeLabelType' because SILAC already has it.
infile_l$IsotopeLabelType <- "L"
}
#########################
## 2.2) label-free : however, several runs for a sample.
#########################
## 2.3) SILAC : two measurements for a feature and a run -> one measurements for a feature and a run and condition
if (experiment == "SILAC") {
## count the number of intensities for feature by runs
##infile$Feature <- paste(infile$Modified.sequence, infile$Charge, sep="_")
##structure <- dcast(Feature ~ Raw.file, data=infile, value.var='Intensity')
##flagduplicate = sum(structure>1)>0
## take the highest intensity among duplicated or sum of intensities
## summaryforMultipleRows="max" or "sum
infile_w <- .cast_maxquant_to_wide_silac(infile, aggregateFun=summaryforMultipleRows)
## *** remove features which has less than 2 measurements across runs
## good to remove before reformatting to long-format
if (fewMeasurements=="remove") {
## it is the same across experiments. # measurement per feature.
infile_w <- .remove_feature_with_few(infile_w)
}
## then, go back to long-format
# good to fill rows with NAs, then now can have balanced data-structure.
infile_l <- .melt_maxquant_to_long_silac(infile_w)
}
################################################
## 4. remove proteins with only one peptide and charge per protein
################################################
if (removeProtein_with1Peptide) {
## remove protein which has only one peptide
infile_l$feature <- paste(infile_l$Modified.sequence, infile_l$Charge, sep="_")
tmp <- unique(infile_l[, c("Proteins", 'feature')])
tmp$Proteins <- factor(tmp$Proteins)
count <- xtabs( ~ Proteins, data=tmp)
lengthtotalprotein <- length(count)
removepro <- names(count[count <= 1])
infile_l <- infile_l[-which(infile_l$Proteins %in% removepro), ]
message(paste0("** ", length(removepro),
' proteins, which have only peptide and charge in a protein, are removed among ',
lengthtotalprotein, ' proteins.'))
}
################################################
## merge all information
colnames(infile_l)[1] <- "ProteinName"
colnames(infile_l)[2] <- "PeptideSequence"
colnames(infile_l)[3] <- "PrecursorCharge"
## Add in columns for FramentIon & ProductCharge (all values are NA)
## Add column for IsotopeLabelType (all "L")
infile_l$FragmentIon <- NA
infile_l$ProductCharge <- NA
## Create Condition & Bioreplicate columns; TODO: fill in with correct values
infile_l <- merge(infile_l, annot, by=c("Raw.file", "IsotopeLabelType"))
infile_l.final <- infile_l[, c(c("ProteinName", "PeptideSequence", "PrecursorCharge",
"FragmentIon", "ProductCharge", "IsotopeLabelType",
"Condition", "BioReplicate", "Raw.file", "Intensity"))]
colnames(infile_l.final)[9] <- "Run"
if (any(is.element(colnames(infile_l), 'Fraction'))) {
infile_l.final <- data.frame(infile_l.final,
"Fraction" = infile_l$Fraction)
}
if (any(is.element(colnames(infile_l), 'TechReplicate'))) {
infile_l.final <- data.frame(infile_l.final,
"TechReplicate" = infile_l$TechReplicate)
}
infile_l <- infile_l.final
rm(infile_l.final)
infile_l$PeptideSequence <- factor(infile_l$PeptideSequence)
infile_l$ProteinName <- factor(infile_l$ProteinName)
return(infile_l)
}
.cast_maxquant_to_wide_glf <- function(d_long, aggregateFun=aggregateFun){
data_w <- dcast( Proteins + Modified.sequence + Charge ~ Raw.file, data=d_long,
value.var='Intensity',
fun.aggregate=aggregateFun, na.rm=T,
keep=TRUE)
## keep=TRUE : will keep the data.frame value as 1 even though there is no values for certain feature and certain run.
## when there is completely missing in certain feature and certain run, '1' will be filled. Therefore put NA instead of 1.
data_w[data_w == 1] <- NA
return(data_w)
}
.cast_maxquant_to_wide_silac <- function(d_long, aggregateFun=aggregateFun){
## check any cell has more than 1
##data_w = dcast( Proteins + Modified.sequence + Charge + IsotopeLabelType ~ Raw.file, data=d_long, value.var='Intensity')
##temp <- data_w[,c(5:ncol(data_w))]
##head(temp)
##sum(temp>1)
##which(temp>1, arr.ind=TRUE)
##data_w[16300,]
##d_long[d_long$Modified.sequence=="HIILVLSGK" & d_long$Charge=="2" & d_long$IsotopeLabelType=="L",]
data_w <- dcast( Proteins + Modified.sequence + Charge + IsotopeLabelType ~ Raw.file, data=d_long,
value.var='Intensity',
fun.aggregate=aggregateFun, na.rm=T,
keep=TRUE)
## keep=TRUE : will keep the data.frame value as 1 even though there is no values for certain feature and certain run.
## when there is completely missing in certain feature and certain run, '1' will be filled. Therefore put NA instead of 1.
data_w[data_w == 1] <- NA
return(data_w)
}
.melt_maxquant_to_long_glf <- function(d_wide){
data_l <- melt(d_wide, id.vars=c('Proteins', 'Modified.sequence', 'Charge'))
colnames(data_l)[colnames(data_l) %in% c("variable", "value")] <- c('Raw.file', 'Intensity')
return(data_l)
}
.melt_maxquant_to_long_silac <- function(d_wide){
data_l <- melt(d_wide, id.vars=c('Proteins', 'Modified.sequence', 'Charge', "IsotopeLabelType"))
colnames(data_l)[colnames(data_l) %in% c("variable", "value")] <- c('Raw.file', 'Intensity')
return(data_l)
}
.remove_feature_with_few <- function(x){
count_measure <- apply (x[, !(colnames(x) %in% c("Proteins", "Modified.sequence", "Charge"))], 1,
function ( x ) length ( x[!is.na(x)] ) )
remove_feature_name <- x[count_measure < 3, c("Proteins", "Modified.sequence", "Charge")]
x$Feature <- paste(x$Proteins, x$Modified.sequence, x$Charge, sep="_")
remove_feature_name$Feature <- paste(remove_feature_name$Proteins,
remove_feature_name$Modified.sequence,
remove_feature_name$Charge, sep="_")
x <- x[-which(x$Feature %in% remove_feature_name$Feature), ]
x <- x[, -ncol(x)]
return(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.