Nothing
############################################
## Functions to load a trained MOFA model ##
############################################
#' @title loading a trained MOFA model
#' @name loadModel
#' @description Method to load a trained MOFA model. \cr
#' The training of MOFA is done using a Python framework, and the model output
#' is saved as an .hdf5 file, which has to be loaded in the R package.
#' @param file an hdf5 file saved by the MOFA python framework.
#' @param object either NULL (default) or an an existing untrained MOFA object.
#' If NULL, the \code{\link{MOFAmodel}} object is created from the scratch.
#' @param sortFactors boolean indicating whether factors should be sorted
#' by variance explained (default is TRUE)
#' @param minR2 minimum R2 threshold to call 'active' factors (default is 0.01).
#' @return a \code{\link{MOFAmodel}} model.
#' @importFrom rhdf5 h5read
#' @export
#' @examples
#' # path to the hdf5 file
#' filepath <- system.file("extdata", "CLL_model.hdf5", package = "MOFAdata")
#' # load the model
#' MOFAobject <- loadModel(filepath)
loadModel <- function(file, object = NULL, sortFactors = TRUE, minR2 = 0.01) {
# message(paste0("Loading the following MOFA model: ", file))
if (is.null(object)) {
object <- new("MOFAmodel")
Status(object) <- "untrained"
}
if(.hasSlot(object,"Status") & length(Status(object)) !=0) {
if (Status(object) == "trained") {
warning("The specified object is already trained, over-writing training output with new results!")
Expectations(object) <- list()
FeatureIntercepts(object) <- list()
TrainStats(object) <- list()
ImputedData(object) <- list()
Dimensions(object) <- list()
}
}
# remove options to make sure the loaded model contains the options it was trained with
DataOptions(object) <- list()
TrainOptions(object) <- list()
ModelOptions(object) <- list()
# Load expectations
Expectations(object) <- h5read(file,"expectations")
# Load training statistics
tryCatch( {
TrainStats(object) <- h5read(file, 'training_stats',read.attributes=TRUE);
colnames(TrainStats(object)[["elbo_terms"]]) <- attr(h5read(file,"training_stats/elbo_terms", read.attributes=TRUE),
"colnames")
}, error = function(x) { print("Training stats not found, not loading it...") })
# Load training options
tryCatch(TrainOptions(object) <- as.list(h5read(file, 'training_opts',read.attributes=TRUE)),
error = function(x) { print("Training opts not found, not loading it...") })
# different names in R and python package (drop_by_r2 in python corresponds to DropFactorThreshold in R)
if("drop_by_r2" %in% names(TrainOptions(object))) {
TrainOptions(object)[["DropFactorThreshold"]] <- TrainOptions(object)[["drop_by_r2"]]
TrainOptions(object)[["drop_by_r2"]] <- NULL
}
# Load model options
tryCatch(ModelOptions(object) <- as.list(h5read(file, 'model_opts',read.attributes=TRUE)),
error = function(x) { print("Model opts not found, not loading it...") })
ModelOptions(object)[["sparsity"]] <- as.logical(ModelOptions(object)[["sparsity"]])
# Load training data
tryCatch( {
TrainData <- h5read(file,"data")
features <- h5read(file,"features")
samples <- h5read(file,"samples")
# Add feature names
if (length(features)>0) {
for (m in names(TrainData)) colnames(TrainData[[m]]) <- features[[m]]
} else {
for (m in names(TrainData)) colnames(TrainData[[m]]) <- paste0("feature_", seq_len(ncol(TrainData[[m]])),"_",m )
}
# Add sample names
if (length(samples)>0) {
if(!is(samples, "list")) samples <- list(samples=samples) # for compatibility with older verisons
for (m in names(TrainData))
rownames(TrainData[[m]]) <- samples[[1]]
} else {
for (m in names(TrainData))
rownames(TrainData[[m]]) <- paste0("sample_",seq_len(nrow(TrainData[[m]])))
}
# Transpose the data so that rows are features and columns are samples
TrainData <- lapply(TrainData, t)
# Replace NaN by NA in the training data
for (m in names(TrainData)) {
TrainData[[m]][is.nan(TrainData[[m]])] <- NA
}
# Store training data in the corresponding slot
TrainData(object) <- TrainData
}, error = function(x) { print("Error loading the training data...") })
# Sanity check on the order of the likelihoods
if (!is.null(attr(TrainData,"likelihood"))) {
lik <- attr(TrainData,"likelihood")
if (!all(ModelOptions(options)[["likelihood"]] == lik)) {
ModelOptions(options)[["likelihood"]] <- lik
names(ModelOptions(options)[["likelihood"]]) <- names(TrainData)
}
}
# Collect feature-wise intercepts (for gaussian data stored during model preparation)
FeatureIntercepts(object) <- tryCatch( {
h5read(file,"intercept")[names(TrainData(object))]
}, error = function(x) {
print("Could not load the feature intercepts. Your features will be centered to zero mean")
list()
})
# Update old models
object <- .updateOldModel(object)
# Load dimensions
Dimensions(object) <- list()
Dimensions(object)[["M"]] <- length(TrainData(object))
Dimensions(object)[["N"]] <- ncol(TrainData(object)[[1]])
Dimensions(object)[["D"]] <- vapply(TrainData(object), nrow, numeric(1))
Dimensions(object)[["K"]] <- ncol(Expectations(object)[["Z"]])
# Set view, sample, feature and factor names
viewNames(object) <- as.character(names(TrainData(object)))
sampleNames(object) <- as.character(colnames(TrainData(object)[[1]]))
featureNames(object) <- lapply(TrainData(object), function(x) as.character(rownames(x)))
factorNames(object) <- paste0("LF",as.character(seq_len(Dimensions(object)[["K"]])))
# Add names to likelihood vector
names(ModelOptions(object)[["likelihood"]]) <- viewNames(object)
# Remove zero factors
nonzero_factors <- which(apply(Expectations(object)[["Z"]], 2,
function(z) !all(z==0)))
if (length(nonzero_factors) < Dimensions(object)[["K"]]) {
message("Removing ", Dimensions(object)[["K"]] - length(nonzero_factors),
" factors that are constant zero from the model...")
}
object <- subsetFactors(object, nonzero_factors)
factorNames(object) <- paste0("LF",as.character(seq_len(length(nonzero_factors))))
# Parse factors: Mask passenger samples
if(is.null(minR2)) minR2 <- TrainOptions(object)[["DropFactorThreshold"]]
object <- .detectPassengers(object, r2_threshold=minR2)
# Parse factors: order factors in order of variance explained
if (sortFactors == TRUE) {
r2 <- rowSums(calculateVarianceExplained(object)$R2PerFactor)
order_factors <- order(r2, decreasing = TRUE)
object <- subsetFactors(object, order_factors)
factorNames(object) <- paste0("LF", seq_len(Dimensions(object)[["K"]]))
}
# Change model status from "untrained" to "trained"
Status(object) <- "trained"
# Do quality control on the model
qualityControl(object)
return(object)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.