Nothing
#Statistical functions.
#Calculate Moments:
rowVars <- function(x) {
.Call(colVarsCpp, t(x))
}
rowSDs <- function(x) {
.Call(colSDsCpp, t(x))
}
colVars <- function(x) {
.Call(colVarsCpp, x)
}
colSDs <- function(x) {
.Call(colSDsCpp, x)
}
colMeanSD <- function(x) {
.Call(colMeanSDCpp, x)
}
rowMeanSD <- function(x) {
.Call(colMeanSDCpp, t(x))
}
NZrowMeans <- function(x) {
.Call(NZcolMeansCpp, t(x))
}
NZcolMeans <- function(x) {
.Call(NZcolMeansCpp, x)
}
NZcolMeanSD <- function(x) {
.Call(NZcolMeanSDCpp, x)
}
NZcolMeanSD_acc <- function(x) {
#Unlike the previous function, which focuses on speed by estimating SD, this function calculates SD accurately.
answer <- matrix(nrow=2, ncol=ncol(x))
for (i in 1:ncol(x)) {
answer[1,i] <- mean(x[x[,i] != 0,i])
answer[2,i] <- sd(x[x[,i] != 0,i])
}
return(answer)
}
NZcolLog1pMeanSD <- function(x,y) {
.Call(NZcolLog1pMeanSDCpp, x,y)
}
NZrowLog1pMeanSD <- function(x,y) {
.Call(NZcolLog1pMeanSDCpp, t(x),y)
}
NZcolLogMeanSDSkew <- function(x) {
.Call(NZcolLogMeanSDSkewCpp, x)
}
NZrowLogMeanSDSkew <- function(x) {
.Call(NZcolLogMeanSDSkewCpp, t(x))
}
#Weighted Means
WNZcolMeans <- function(x,y) {
.Call(WNZcolMeansCpp, x,y)
}
WcolMeans <- function(x,y) {
.Call(WcolMeansCpp, x,y)
}
#Fisher's method of combining p values.
FishersMethod <- function(p) {
pchisq( -2*sum(log(p)), df=length(p)*2, lower.tail=FALSE)
}
#Significance of Pearson correlation coefficient.
r.sig <- function(r,n) {
tvalue <- abs(r) * sqrt((n - 2)/(1 - r^2))
return(2*pt(tvalue, n, lower.tail =FALSE))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.