Nothing
#' @title LinkData: multiple heterogeneous dataset integration
#' @description Integrating multiple Heterogeneous Datasets
#' stored into a list. This function makes Statis using Distances options.
#' Statis is part of the PCA family and is based on singular value decomposition
#' (SVD) and the generalized singular value decomposition (GSVD) of a matrix.
#' This methodology aims to analyze several data sets of
#' variables that were collected on the same set of observations.
#' Originally, the comparisons were drawn from the compute
#' of the scalar product between the different tables.
#' In our approach, the condition is relaxing
#' allowing the incorporation of different distances.
#'@param Data should be a list of dataframes or ExpressionSet data
#' with the same length of the number of tables to be integrate.
#' In each dataframe, the Observations (common elements on Statis)
#' should be in rows and the variables should be in columns.
#' Data also might be a MultiAssayExperiment object
#' from MultiAssayExperiment package, a software for
#' multi-omics experiments integration in Bioconductor.
#'@param Distance Vector indicating which distance (including scalar product)
#' should be applied to each study. If is missing,
#' the scalar product is used. The vector lenght must be equal
#' to the length of Data. Distance options: ScalarProduct, euclidean,
#' manhattan, canberra, pearson, pearsonabs, spearman,
#' spearmanabs, mahalanobis, BrayCurtis distance (please, use option Bray).
#' For binary data, the distance can be jaccard,
#' simple_matching, sokal_Sneath, Roger_Tanimoto, Dice,
#' Hamman, Ochiai, Phi_Pearson, 'Gower&Legendre.
#' Note that, use pre-processing option as compositional and
#' Euclidean is the same than use Aitchison distance for compositional data.
#'@param Center Logical. If TRUE, the data frame
#'is centered by the mean. By default is FALSE.
#' If you have tables with different characteristics (continous phenotypes, frecuencies,
#'compositional data), we strongly recomendate normalize
#' datasets as a previous step through DataProcessing option.
#'@param Scale A logical value indicating whether the column vectors should be
#'standardized by the rows weight, by default is FALSE.
#'Note that all data into the list will be scaled.
#'If you don't need normalizing all data, you
#'could set this parameter as False and perform the normalization step
#'externally by using DataProcessing function.
#'If you have tables with different characteristics (continous phenotypes, frecuencies,
#'compositional data), we strongly recomendate normalize datasets
#' as a previous step through DataProcessing option.
#'@param CorrelVector Logical. If TRUE (default), the RV matrix is
#'computed using vectorial correlation, else
#'the Hilbert-Smith distance is used.
#'@param nCluster this variable indicates if common
#'elements on the dataset should be grouped (by default is zero, i.e. no-cluster).
#'@param cl_method categorical (pam or kmeans). pam is a robust
#' version of classical kmeans algorithm.
#'@return \item{LinkData}{DistStatis class object with the
#'corresponding completed slots according to the given model}
#'@export LinkData
#'@author Laura M Zingatetti
#'
#' @references
#' \enumerate{
#' \item Escoufier, Y. (1976). Operateur associe a un tableau de donnees.
#' Annales de laInsee, 22-23, 165-178.
#' \item Escoufier, Y. (1987). The duality diagram: a means
#' for better practical applications. En P. Legendre & L. Legendre (Eds.),
#' Developments in Numerical Ecology, pp. 139-156,
#' NATO Advanced Institute, Serie G. Berlin: Springer.
#' \item L'Hermier des Plantes, H. (1976). Structuration des
#' Tableaux a Trois Indices de la Statistique. [These de Troisieme Cycle].
#' University of Montpellier, France.
#'}
#'
#' @examples
#' {
#'data(Taraoceans)
#'pro.phylo <- Taraoceans$taxonomy[ ,'Phylum']
#'TaraOc<-list(Taraoceans$phychem,as.data.frame(Taraoceans$pro.phylo)
#',as.data.frame(Taraoceans$pro.NOGs))
#'TaraOc_1<-scale(TaraOc[[1]])
#'Normalization<-lapply(list(TaraOc[[2]],TaraOc[[3]]),
#'function(x){DataProcessing(x,Method='Compositional')})
#'colnames(Normalization[[1]])=pro.phylo
#'colnames(Normalization[[2]])=Taraoceans$GO
#'TaraOc<-list(TaraOc_1,Normalization[[1]],Normalization[[2]])
#'names(TaraOc)<-c('phychem','pro_phylo','pro_NOGs')
#'TaraOc<-lapply(TaraOc,as.data.frame)
#'Output<-LinkData(TaraOc,Scale =FALSE,Distance = c('ScalarProduct','Euclidean','Euclidean'))
#' }
#'
#' @name LinkData
#' @rdname LinkData-LinkData
#' @import methods
#' @importFrom methods as is
#' @import scales
#' @importFrom cluster pam
#' @importClassesFrom MultiAssayExperiment MultiAssayExperiment
#' @importMethodsFrom MultiAssayExperiment assays
LinkData <- function(Data, Distance = c(), Center = FALSE, Scale = FALSE, CorrelVector = TRUE, nCluster = 0,
cl_method = "pam") {
## Auxiliary functions Function for implementation the Statis Method with Distance options. The Data must be
## a list of data.frames or ExpressionSet check if elements of list are ESet data.
if (!is(Data, "list") & !is(Data, "MultiAssayExperiment")) {
stop("your dataset should be stored in a list containing data.frame or ExpressionSet object or a MultiAssayExperiment object ")
}
if (is(Data, "list")) {
if (unique(lapply(Data, class)) == "ExpressionSet") {
Data <- lapply(Data, function(x) {
as(x, "data.frame")
})
Data <- lapply(Data, function(x) {
t(x)
})
Data <- lapply(Data, as.data.frame)
}
}
if (is(Data, "MultiAssayExperiment")) {
Data <- assays(Data)
}
if (length(Data) < 2) {
stop("you need a list of at least two data.frames")
}
if (nCluster < 0) {
nCluster = 0
message("warning: nCluster should be a positive integer")
}
# checking if data.frame have rows and columns names
columns <- lapply(Data, colnames)
rows <- lapply(Data, rownames)
Names_Col <- lapply(columns, is.null)
Names_Row <- lapply(rows, is.null)
if (any(Names_Col == TRUE)) {
stop("All your data.frame should include columns names")
}
if (any(Names_Row == TRUE)) {
stop("All your data.frame should include rownames names")
}
if (is.null(names(Data))) {
names(Data) <- seq_along(Data)
}
# rownames should be the same in all tables
if (all(apply((x <- vapply(Data, rownames, character(nrow(Data[[1]])))), 2, function(y) +identical(y, x[,
1]))) == FALSE) {
stop("tables should be the same observations")
}
# Normalice Data by frec or by sd else use Normalize
if (Scale == FALSE & Center == FALSE) {
X <- lapply(Data, as.matrix)
names(X) <- names(Data)
} else {
X <- Normalize(Data, scale = Scale, center = Center)
names(X) <- names(Data)
}
# In--> number of observations.
In <- nrow(X[[1]])
# Create a Diagonal matrix with 1/n
D <- diag(rep(1, In))/In
# Z matrix is the centering matrix used to calculate distances, see Abdi (2007) see Abdi 2007 (Multiple
# distances matrix)
M1 <- matrix(rep(1, In)/In, ncol = In, nrow = 1)
Ones <- matrix(rep(1, In), ncol = 1, nrow = In)
Id <- diag(1, nrow = In, ncol = In)
Z <- Id - Ones %*% M1
# get data names put X row/col names using Data
for (i in seq_along(Data)) {
colnames(X[[i]]) <- colnames(Data[[i]])
rownames(X[[i]]) <- rownames(Data[[i]])
}
# Calculate Distance for each table If not specify Distance or length(Distance)!=K, the scalar product is
# used This list name (S) follows Abdi (2007)
S = list()
if (length(Distance) != length(Data)) {
S <- lapply(X, ScalarProduct)
message("The calculations were performed using the scalar product between the tables")
Distance <- "scalar-product"
}
if (length(Distance) == length(Data)) {
S <- lapply(seq_along(Distance), function(i) {
ComputeDistance(X[[i]], Distance[i], Z)
})
}
names(S) <- names(Data)
########################################################################## Vectorial correlation (SW)############################
SW <- list()
for (k in seq_along(S)) {
wk <- as.matrix(S[[k]]) %*% D
wk <- t(t(wk) %*% D)
wk <- wk %*% t(wk)
SW[[k]] <- wk
}
if (CorrelVector == TRUE) {
sep <- matrix(unlist(SW), In * In, length(S))
RV <- t(sep) %*% sep
ak <- sqrt(diag(RV))
RV <- sweep(RV, 1, ak, "/")
RV <- sweep(RV, 2, ak, "/")
dimnames(RV) <- list(names(S), names(S))
} else {
sep <- matrix(unlist(SW), In * In, length(S))
RV <- t(sep) %*% sep
dimnames(RV) <- list(names(S), names(S))
}
######################################################################### INTER-STRUCTURE################################
SvdRV <- svd(RV)
# percentage of inertia explained by the dimensions
InertiaExpRV <- c(((SvdRV$d)/sum(diag(SvdRV$d))) * 100)
InertiaExpRV <- data.frame(InertiaExpRV)
# inertia accumulated
CumInertiaExpRV <- cumsum(InertiaExpRV)
InertiaExpRV <- as.data.frame(cbind(SvdRV$d, InertiaExpRV, CumInertiaExpRV))
colnames(InertiaExpRV) <- c("Value", "Inertia(%)", "Cumulative Inertia (%)")
Dim <- c(paste("Dim", seq_along(S)))
rownames(InertiaExpRV) <- Dim
### the following code is just to plot the Euclidean image of each table###
cc <- SvdRV$u %*% sqrt(diag(SvdRV$d))
if (any(cc[, 1] < 0))
cc[, 1] <- -cc[, 1]
ImSt <- as.data.frame(cc[, seq_len(2)])
rownames(ImSt) <- names(S)
colnames(ImSt) <- c("Dim1", "Dim2")
###### Calculate the cosine between studies#########
A <- cc[, seq_len(2)] %*% t(cc[, seq_len(2)])
M <- diag(1/sqrt(diag(A)))
Cosin <- M %*% A %*% M
Angulos <- acos(as.dist(Cosin))
SqCos <- Cosin^2
SqCos <- as.data.frame(SqCos)
colnames(SqCos) <- names(S)
rownames(SqCos) <- names(S)
##################################################### INTER-STRUCTURE:Compromise #############
# The first eigenvector give the optimal weights to compute the compromise matrix. Practically, the optimal
# weights can be obtained by re-scaling these values such that their sum is equal to one. So the weights are
# obtained by dividing each element of p1 by the sum of the elements of p1.
sc <- sum(sqrt(diag(RV)))
if (any(SvdRV$u[, 1] < 0)) {
SvdRV$u[, 1] <- -SvdRV$u[, 1]
}
pit <- vapply(seq_len(nrow(RV)), function(i) {
(sc/sqrt(SvdRV$d[1])) * SvdRV$u[i, 1]
}, numeric(1))
alphas <- pit/sum(pit)
# WW is just the compromise matrix
WW <- matrix(0, nrow = nrow(S[[1]]), ncol = ncol(S[[1]]))
for (i in seq_along(S)) {
WW <- WW + alphas[i] * S[[i]]
}
### www data.frame compromise
WWW <- as.data.frame(WW)
rownames(WWW) <- as.matrix(rownames(Data[[1]]))
colnames(WWW) <- as.matrix(rownames(Data[[1]]))
##################################################################################### Singular value Decomposition of Compromise matrix (WWW)################
SvdComp <- svd(WW)
InerComp <- c((SvdComp$d/sum(diag(SvdComp$d))) * 100)
# InerComp porcentaje de inercia explicado por las dimensiones
InerComp <- cbind(SvdComp$d, InerComp, cumsum(InerComp))
Dim <- c(paste("Dim", seq_len(nrow(WW))))
rownames(InerComp) <- Dim
colnames(InerComp) <- c("Values", "Inertia", "Cumulative Inertia")
########### Projection of compromise' observations###########
AP <- WW %*% SvdComp$u %*% diag((1/sqrt(SvdComp$d)))
# AP for plot
ProjObs <- as.data.frame(AP[, seq_len(min(4, ncol(AP)))])
rownames(ProjObs) <- rownames(Data[[1]])
A <- paste("Dim", seq_len(min(4, ncol(AP))))
colnames(ProjObs) <- A
##################################################### Rendering Quality of the Observations (RQO,RQI)###
RQITot <- as.data.frame((apply(AP[, seq_len(2)]^2, 1, sum)/apply(AP^2, 1, sum)) * 100)
rownames(RQITot) <- rownames(S[[1]])
colnames(RQITot) <- "RQI(%)"
###################################################### CLUSTER######################################
if (nCluster > 0) {
if (floor(nCluster) != nCluster) {
stop("The number of cluster must to be a positive integer")
}
if (nCluster == 1) {
nCluster == 2
message("You must to ask by at least two clusters")
}
if (nCluster > nrow(ProjObs)) {
stop("the number of clusters should be smaller than the number of observations")
}
# k-means over compromise matrix
if (cl_method == "pam") {
fit <- pam(ProjObs[, seq_len(2)], nCluster)
Means_clusters = aggregate(ProjObs, by = list(fit$clustering), FUN = mean)
# append cluster assignment
ProjObs <- data.frame(ProjObs, fit$cluster)
}
if (cl_method == "km") {
fit <- kmeans(ProjObs[, seq_len(2)], nCluster)
Means_clusters = aggregate(ProjObs, by = list(fit$cl), FUN = mean)
# append cluster assignment
ProjObs <- data.frame(ProjObs, fit$cl)
}
}
#################### INTRA-STRUCTURE################### The intrastructure step is a projection of the rows of each table of
#################### the series into the multidimensional space of the compromise analysis.
### projection of each table on Compromise configuration
Studies <- unique(names(S))
Observations <- rownames(X[[1]])
TableProjections <- lapply(seq_along(S), function(i) {
TabProj(S[[i]], SvdComp, Studies[i], Observations)
})
names(TableProjections) <- names(S)
# return projections
## Return of different slots
.Object <- new("DistStatis", Inertia.RV = InertiaExpRV, RV = RV, Euclid.Im = ImSt, Inertia.comp = InerComp,
Compromise.Coords = ProjObs, Compromise.Matrix = WWW, RQO = RQITot, TableProjections = TableProjections)
validObject(.Object)
return(.Object)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.