Nothing
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#++++++++ Decompress parameters: Compute parameter values from model +++++#
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++#
#' Compute mean parameter estimates from mean parameter model for a gene
#'
#' Takes the model type and computes one mean parameter for each cell for one
#' gene.
#'
#' @seealso Called by \code{fitZINB}.
#'
#' @param vecMuModel (numerical vector number of model parameters)
#' Parameters of mean model for given gene.
#' @param lsvecBatchModel (list)
#' List of vectors of batch correction models for mean parameter.
#' @param lsMuModelGlobal (list)
#' Object containing meta-data of gene-wise mean parameter models.
#' @param vecInterval (integer vector length target cells) [Default NULL]
#' Positions of cells in ordering, for which parameters are to be
#' computed. Default all cells.
#'
#' @return vecMu (numerical vector number of cells)
#' Mean parameter estimates for given gene given the mean model.
#'
#' @author David Sebastian Fischer
decompressMeansByGene <- function(
vecMuModel,
lsvecBatchModel=NULL,
lsMuModelGlobal,
vecInterval=NULL ){
if(lsMuModelGlobal$strMuModel=="constant"){
if(!is.null(vecInterval)){
vecMu <- rep(vecMuModel, length(vecInterval))
} else {
vecMu <- rep(vecMuModel, lsMuModelGlobal$scaNumCells)
}
} else if(lsMuModelGlobal$strMuModel=="impulse"){
if(!is.null(vecInterval)){
vecMu <- evalImpulseModel_comp(
vecImpulseParam=vecMuModel,
vecTimepoints=lsMuModelGlobal$vecContinuousCovar[vecInterval])
} else {
vecMu <- evalImpulseModel_comp(
vecImpulseParam=vecMuModel,
vecTimepoints=lsMuModelGlobal$vecContinuousCovar)
}
} else if(lsMuModelGlobal$strMuModel=="splines"){
if(!is.null(vecInterval)){
vecMu <- exp(as.vector(lsMuModelGlobal$matSplineBasis[
vecInterval,,drop=FALSE] %*% vecMuModel))
} else {
vecMu <- exp(as.vector(
lsMuModelGlobal$matSplineBasis %*% vecMuModel))
}
} else if(lsMuModelGlobal$strMuModel=="groups"){
if(!is.null(vecInterval)){
vecMu <- vecMuModel[lsMuModelGlobal$vecidxGroups[vecInterval]]
} else {
vecMu <- vecMuModel[lsMuModelGlobal$vecidxGroups]
}
} else if(lsMuModelGlobal$strMuModel=="MM"){
# Expect mean of ONE MIXTURE component! vecMuModel is scalar
if(!is.null(vecInterval)){
vecMu <- rep(vecMuModel, length(vecInterval))
} else {
vecMu <- rep(vecMuModel, lsMuModelGlobal$scaNumCells)
}
} else {
stop("ERROR decompressMeans(): lsMuModelGlobal$strMuModel=",
lsMuModelGlobal$strMuModel, " not recognised.")
}
# Scale by batch factors
if(!is.null(lsMuModelGlobal$lsvecidxBatchAssign)){
for(conf in seq_len(lsMuModelGlobal$scaNConfounders)){
if(!is.null(vecInterval)){
vecMu <- vecMu*(lsvecBatchModel[[conf]][
(lsMuModelGlobal$lsvecidxBatchAssign[[conf]])[
vecInterval]])
} else {
vecMu <- vecMu*(lsvecBatchModel[[conf]][
lsMuModelGlobal$lsvecidxBatchAssign[[conf]]])
}
}
}
return(vecMu)
}
#' Compute mean parameter estimate matrix from mean parameter model
#' for a gene (strMuModel == "MM")
#'
#' @param vecMuModel (numerical vector number of model parameters)
#' Parameters of mean model for given gene (means by mixture).
#' @param lsvecBatchModel (list) [Defaul NULL]
#' List of vectors of batch correction models for mean parameter.
#' @param lsMuModelGlobal (list)
#' Object containing meta-data of gene-wise mean parameter models.
#' @param vecInterval (integer vector length target cells) [Default NULL]
#' Positions of cells in ordering, for which parameters are to be
#' computed. Default all cells.
#'
#' @return matMu (matrix number of cells x number of mixtures)
#' Mean parameter estimates for given gene given the mean model.
#'
#' @author David Sebastian Fischer
decompressMuByGeneMM <- function(
vecMuModel,
lsvecBatchModel=NULL,
lsMuModelGlobal,
vecInterval=NULL ){
# Scaling by batch factors is constant across mixtures
vecBatchScale <- matrix(1, nrow = lsMuModelGlobal$scaNumCells, ncol = 1)
if(!is.null(lsMuModelGlobal$lsvecidxBatchAssign)){
for(conf in seq_len(lsMuModelGlobal$scaNConfounders)){
if(!is.null(vecInterval)){
vecBatchScale <- vecBatchScale*(lsvecBatchModel[[conf]][
(lsMuModelGlobal$lsvecidxBatchAssign[[conf]])[
vecInterval]])
} else {
vecBatchScale <- vecBatchScale*(lsvecBatchModel[[conf]][
lsMuModelGlobal$lsvecidxBatchAssign[[conf]]])
}
}
}
matMu <- vecBatchScale %*% vecMuModel
return(matMu)
}
#' Compute dispersion parameter estimates from mean parameter model for a gene
#'
#' Takes the model type and computes one dispersion parameter
#' for each cell for one gene.
#'
#' @seealso Called by \code{fitZINB}.
#'
#' @param vecDispModel (numerical vector number of model parameters)
#' Parameters of dispersion model for given gene.
#' @param lsvecBatchModel (list) [Defaul NULL]
#' List of vectors of batch correction models for dispersion parameter.
#' @param lsDispModelGlobal (list)
#' Object containing meta-data of gene-wise dispersion parameter models.
#' @param vecInterval (integer vector length target cells) [Default NULL]
#' Positions of cells in ordering, for which parameters are to be
#' computed. Default all cells.
#'
#' @return vecDisp (numerical vector number of cells)
#' Dispersion parameter estimates for given gene
#' (one per cell for given gene).
#'
#' @author David Sebastian Fischer
decompressDispByGene <- function(
vecDispModel,
lsvecBatchModel=NULL,
lsDispModelGlobal,
vecInterval=NULL ){
if(lsDispModelGlobal$strDispModel=="constant"){
if(!is.null(vecInterval)) {
vecDisp <- rep(vecDispModel, length(vecInterval))
} else {
vecDisp <- rep(vecDispModel, lsDispModelGlobal$scaNumCells)
}
} else if(lsDispModelGlobal$strDispModel=="splines"){
if(!is.null(vecInterval)){
vecDisp <- exp(as.vector(lsDispModelGlobal$matSplineBasis[
vecInterval,,drop=FALSE] %*% vecDispModel))
} else {
vecDisp <- exp(as.vector(lsDispModelGlobal$matSplineBasis %*%
vecDispModel))
}
} else if(lsDispModelGlobal$strDispModel=="groups"){
if(!is.null(vecInterval)){
vecDisp <- vecDispModel[
lsDispModelGlobal$vecidxGroups[vecInterval]]
} else {
vecDisp <- vecDispModel[lsDispModelGlobal$vecidxGroups]
}
} else if(lsDispModelGlobal$strDispModel=="MM"){
# Expect mean of ONE MIXTURE component! vecDispModel is scalar
if(!is.null(vecInterval)){
vecDisp <- rep(vecDispModel, length(vecInterval))
} else {
vecDisp <- rep(vecDispModel, lsDispModelGlobal$scaNumCells)
}
} else {
stop("ERROR decompressDispersions():",
" lsDispModelGlobal$strDispModel=",
lsDispModelGlobal$strDispModel,
" not recognised.")
}
# Scale by batch factors
if(!is.null(lsDispModelGlobal$lsvecidxBatchAssign)){
for(conf in seq_len(lsDispModelGlobal$scaNConfounders)){
if(!is.null(vecInterval)){
vecDisp <- vecDisp*(lsvecBatchModel[[conf]][
(lsDispModelGlobal$lsvecidxBatchAssign[[conf]])[
vecInterval]])
} else {
vecDisp <- vecDisp*(lsvecBatchModel[[conf]][
lsDispModelGlobal$lsvecidxBatchAssign[[conf]]])
}
}
}
return(vecDisp)
}
#' Compute mean parameter estimate matrix from mean parameter model
#' for a gene (strDispModel == "MM")
#'
#' @param vecDispModel (numerical vector number of model parameters)
#' Parameters of dispersion model for given gene.
#' @param lsvecBatchModel (list) [Defaul NULL]
#' List of vectors of batch correction models for dispersion parameter.
#' @param lsDispModelGlobal (list)
#' Object containing meta-data of gene-wise dispersion parameter models.
#' @param vecInterval (integer vector length target cells) [Default NULL]
#' Positions of cells in ordering, for which parameters are to be
#' computed. Default all cells.
#'
#' @return matDisp (matrix number of cells x number of mixtures)
#' Dispersion parameter estimates for given gene given the mean model.
#'
#' @author David Sebastian Fischer
decompressDispByGeneMM <- function(
vecDispModel,
lsvecBatchModel=NULL,
lsDispModelGlobal,
vecInterval=NULL ){
# Scaling by batch factors is constant across mixtures
vecBatchScale <- matrix(1, nrow = lsDispModelGlobal$scaNumCells, ncol = 1)
if(!is.null(lsDispModelGlobal$lsvecidxBatchAssign)){
for(conf in seq_len(lsDispModelGlobal$scaNConfounders)){
if(!is.null(vecInterval)){
vecBatchScale <- vecBatchScale*(lsvecBatchModel[[conf]][
(lsDispModelGlobal$lsvecidxBatchAssign[[conf]])[
vecInterval]])
} else {
vecBatchScale <- vecBatchScale*(lsvecBatchModel[[conf]][
lsDispModelGlobal$lsvecidxBatchAssign[[conf]]])
}
}
}
if(lsDispModel$lsDispModelGlobal$strDispModel=="constant"){
matDispParam <- matrix(vecBatchScale*vecDispModel,
nrow = length(vecBatchScale),
ncol = lsDispModelGlobal$scaNMix,
byrow = FALSE)
} else if(lsDispModel$lsDispModelGlobal$strDispModel=="MM"){
matDisp <- vecBatchScale %*% vecDispModel
} else {
stop("ERROR decompressDispByGeneMM():",
" lsDispModelGlobal$strDispModel=",
lsDispModelGlobal$strDispModel,
" not recognised.")
}
return(matDisp)
}
#' Compute dropout rate parameter estimates from dropout rate model for a gene
#'
#' Compute dropout rate parameter estimates
#' from dropout rate model for a gene.
#'
#' @seealso Called by \code{fitZINB}.
#'
#' @param matDropModel (numerical matrix cell x number of model parameters)
#' {offset parameter, log(mu) parameter, parameters belonging to
#' constant predictors}
#' Parameters of dropout rate model for all cells.
#' @param vecMu (numerical vector number of genes)
#' Mean parameter estimates of all cells for given gene.
#' @param vecPiConstPredictors (numerical vector number of
#' constant model predictors) Other model predictors than offset
#' and the dynamically changing mean parameter. Examples are GC-
#' content and other gene-specific properties. This would be the
#' global parameters as listed in the other decompression
#' function. Here those are not a list as there is only one object.
#' @param lsDropModelGlobal (list)
#' Object containing meta-data of cell-wise dropout parameter models.
#'
#' @return vecPi (numerical vector number of cells)
#' Dispersion parameter estimates for given gene
#' (one per cell for given gene).
#'
#' @author David Sebastian Fischer
decompressDropoutRateByGene <- function(
matDropModel,
vecMu=NULL,
vecPiConstPredictors=NULL,
lsDropModelGlobal ){
if(lsDropModelGlobal$strDropModel=="logistic"){
vecPi <- sapply(seq_len(lsDropModelGlobal$scaNumCells), function(j){
evalDropoutModel_comp(vecPiModel=matDropModel[j,],
vecPiPredictors=c(1, vecPiConstPredictors))
})
} else if(lsDropModelGlobal$strDropModel=="logistic_ofMu"){
vecPi <- sapply(seq_len(lsDropModelGlobal$scaNumCells), function(j){
evalDropoutModel_comp(vecPiModel=matDropModel[j,],
vecPiPredictors=c(1, log(vecMu[j]),
vecPiConstPredictors))
})
} else {
stop("ERROR IN decompressDropoutRateByGene: ",
"lsDropModelGlobal$strDropModel=",
lsDropModelGlobal$strDropModel,
" not recognised.")
}
return(vecPi)
}
#' Compute dropout rate parameter estimates from dropout rate model for a cell
#'
#' Compute dropout rate parameter estimates
#' from dropout rate model for a cell.
#'
#' @seealso Called by \code{fitZINB}.
#'
#' @param vecDropModel (numerical vector number of model parameters)
#' {offset parameter, log(mu) paramter, parameters belonging to
#' constant predictors}
#' Parameters of dropout rate model for given cell.
#' @param vecMu (numerical vector number of genes)
#' Mean parameter estimates of all genes for given cell.
#' @param matPiConstPredictors (numerical matrix genes x number of
#' constant model predictors) Other model predictors than offset
#' and the dynamically changing mean parameter. Examples are GC-
#' content and other gene-specific properties. This would be the
#' global parameters as listed in the other decompression
#' function. Here those are not a list as there is only one object.
#' @param lsDropModelGlobal (list)
#' Object containing meta-data of cell-wise dropout parameter models.
#'
#' @return vecPi (numerical vector number of cells)
#' Dispersion parameter estimates for given gene
#' (one per cell for given gene).
#'
#' @author David Sebastian Fischer
decompressDropoutRateByCell <- function(
vecDropModel,
vecMu=NULL,
matPiConstPredictors=NULL,
lsDropModelGlobal){
if(lsDropModelGlobal$strDropModel=="logistic"){
vecPi <- sapply(seq_len(lsDropModelGlobal$scaNumGenes), function(i){
evalDropoutModel_comp(vecPiModel = vecDropModel,
vecPiPredictors =
c(1, matPiConstPredictors[i,]))
})
} else if(lsDropModelGlobal$strDropModel=="logistic_ofMu"){
vecPi <- sapply(seq_len(lsDropModelGlobal$scaNumGenes), function(i){
evalDropoutModel_comp(vecPiModel=vecDropModel,
vecPiPredictors=c(1, log(vecMu[i]),
matPiConstPredictors[i,]))
})
} else {
stop("ERROR IN decompressDropoutRateByCell: ",
"lsDropModelGlobal$strDropModel=",
lsDropModelGlobal$strDropModel,
" not recognised.")
}
return(vecPi)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.