Nothing
trigammaInverse <- function(x) {
# Solve trigamma(y) = x for y
# Gordon Smyth
# 8 Sept 2002. Last revised 12 March 2004.
#
# From limma package in Bioconductor
#
# Non-numeric or zero length input
if(!is.numeric(x)) stop("Non-numeric argument to mathematical function")
if(length(x)==0) return(numeric(0))
# Treat out-of-range values as special cases
omit <- is.na(x)
if(any(omit)) {
y <- x
if(any(!omit)) y[!omit] <- Recall(x[!omit])
return(y)
}
omit <- (x < 0)
if(any(omit)) {
y <- x
y[omit] <- NaN
warning("NaNs produced")
if(any(!omit)) y[!omit] <- Recall(x[!omit])
return(y)
}
omit <- (x > 1e7)
if(any(omit)) {
y <- x
y[omit] <- 1/sqrt(x[omit])
if(any(!omit)) y[!omit] <- Recall(x[!omit])
return(y)
}
omit <- (x < 1e-6)
if(any(omit)) {
y <- x
y[omit] <- 1/x[omit]
if(any(!omit)) y[!omit] <- Recall(x[!omit])
return(y)
}
# Newton's method
# 1/trigamma(y) is convex, nearly linear and strictly > y-0.5,
# so iteration to solve 1/x = 1/trigamma is monotonically convergent
y <- 0.5+1/x
iter <- 0
repeat {
iter <- iter+1
tri <- trigamma(y)
dif <- tri*(1-tri/x)/psigamma(y,deriv=2)
y <- y+dif
if(max(-dif/y) < 1e-8) break
if(iter > 50) {
warning("Iteration limit exceeded")
break
}
}
y
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.