Description Usage Arguments Value Author(s) References See Also Examples
View source: R/Impulse_DE_fin.R
Plots impulse model fits for the specified gene IDs. In the case of two time courses, the fits for the combined, case and control data are plotted.
1 2 3 4 | plot_impulse(gene_IDs, data_table, data_annotation, imp_fit_genes,
control_timecourse = FALSE, control_name = NULL, case_name = NULL,
file_name_part = "", title_line = "", sub_line = "",
new_device = TRUE)
|
gene_IDs |
character vector of gene names to be plotted; must be part
of the |
data_table |
numeric matrix of expression values; genes should be in rows, samples in columns. Data should be properly normalized and log2-transformed as well as filtered for present or variable genes. |
data_annotation |
table providing co-variables for the samples including condition and time points. Time points must be numeric numbers. |
imp_fit_genes |
list of fitted impulse model values and parameters as
produced by |
control_timecourse |
logical indicating whether a control time
timecourse is part of the data set ( |
control_name |
character string specifying the name of the control
condition in |
case_name |
character string specifying the name of the case
condition in |
file_name_part |
character string to be used as file extention. |
title_line |
character string to be used as title for each plot. |
sub_line |
character string to be used as subtitle for each plot. |
new_device |
logical indicating whether each plot should be plotted
into a new device ( |
Plots of the impulse model fits for the specified gene IDs.
Jil Sander
Chechik, G. and Koller, D. (2009) Timing of Gene Expression Responses to Envi-ronmental Changes. J. Comput. Biol., 16, 279-290.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | #' Install package longitudinal and load it
library(longitudinal)
#' Attach datasets
data(tcell)
#' check dimension of data matrix of interest
dim(tcell.10)
#' generate a proper annotation table
annot <- as.data.frame(cbind("Time" =
sort(rep(get.time.repeats(tcell.10)$time,10)),
"Condition" = "activated"), stringsAsFactors = FALSE)
#' Time columns must be numeric
annot$Time <- as.numeric(annot$Time)
#' rownames of annotation table must appear in data table
rownames(annot) = rownames(tcell.10)
#' since genes must be in rows, transpose data matrix using t()
#' consider 6 genes for now only
genes <- c("SIVA","CD69","ZNFN1A1","IL4R","MAP2K4","JUND")
tcell.10.filtered <- t(tcell.10[,genes])
#' generate a list object having the form of the output of impulse_DE
#' first the parameter fits and SSEs
impulse_parameters_case <- matrix(
c(0.6, 18.6, 17.2, 17.4, 5.1, 40.2, 3.5,
0.3, -464.9, 18.3, 17.3, -17.2, 35.3, 17.5,
23.2, 18, 18.8, 18.5, 3, 37, 13.2,
NA, NA, NA, NA, NA, NA, 3.1,
NA, NA, NA, NA, NA, NA, 9.6,
9.5, 17.5, 18.7, 17.5, 8, 48, 46.7),length(genes),7, byrow = TRUE)
rownames(impulse_parameters_case) <- genes
colnames(impulse_parameters_case) <- c("beta", "h0", "h1", "h2", "t1", "t2", "SSE")
#' then the fitted values for the time points
impulse_fits_case <- matrix(c(
18.55, 18.43, 18.15, 17.73, 17.43, 17.24, 17.24, 17.24, 17.38, 17.38,
16.22, 17.18, 17.7, 17.97, 18.12, 18.27, 18.26, 18.03, 17.3, 17.28,
18, 18, 18.82, 18.82, 18.82, 18.82, 18.82, 18.82, 18.48, 18.48,
15.93, 15.93, 15.93, 15.93, 15.93, 15.93, 15.93, 15.93, 15.93, 15.93,
17.62, 17.62, 17.62, 17.62, 17.62, 17.62, 17.62, 17.62, 17.62, 17.62,
17.5, 17.5, 17.5, 17.5, 18.18, 18.67, 18.67, 18.67, 17.98, 17.53)
,length(genes),length(unique(annot$Time)), byrow = TRUE)
rownames(impulse_fits_case) <- genes
colnames(impulse_fits_case) <- unique(annot$Time)
#' finalize list object
impulse_fit_genes <- list("impulse_parameters_case" = impulse_parameters_case,
"impulse_fits_case" = impulse_fits_case)
#' Plot expression values
plot_impulse(genes, tcell.10.filtered, annot, impulse_fit_genes)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.