Description Author(s) References Examples
Implementation of the Interval-Wise Testing for "Omics" data, an extended version of the Interval-Wise Testing for functional data presented in Pini and Vantini (2017). This inferential procedure tests for differences in "Omics" data between two groups of genomic regions (or between a group of genomic regions and a reference curve), and does not require fixing location and scale at the outset.
Marzia A Cremona, Alessia Pini, Francesca Chiaromonte, Simone Vantini
Maintainer: Marzia A Cremona <mac78@psu.edu>
A Pini and S Vantini (2017). Interval-Wise Testing for functional data. Journal of Nonparametric Statistics.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | ## -------------------------------------------------------------------------------------------
## -------------------------------------------------------------------------------------------
## EXAMPLE ON REAL DATA
## -------------------------------------------------------------------------------------------
## -------------------------------------------------------------------------------------------
## ETn Recombination hotspots data
## Two region datasets:
## ETns fixed 64-kb flanking regions and 64-kb control regions in mouse
## One feature measured in 1-kb windows:
## Recombination hotspots content
## ?ETn_example for details on the dataset
data(ETn_example)
ETn_example
## -------------------------------------------------------------------------------------------
## PLOT DATA
## -------------------------------------------------------------------------------------------
## Plot the pointwise boxplot and averages of the curves in ETn and control regions
## (note that the box of the pointwise boxplot is zero, but the average is not)
plot(ETn_example)
## -------------------------------------------------------------------------------------------
## PERFORM THE TEST
## -------------------------------------------------------------------------------------------
## Two sample test to compare recombination hotspots
## in ETn regions vs control regions
ETn_test=IWTomicsTest(ETn_example,
id_region1='ETn_fixed',id_region2='Control')
## Adjusted p-value
adjusted_pval(ETn_test)
## Plotting the test results
plotTest(ETn_test)
## Adjusted p-value lowering the scale of the test
adjusted_pval(ETn_test,scale_threshold=10)
## Plotting the test results, lowering the scale of the test
plotTest(ETn_test,scale_threshold=10)
## Summary plot of the two sample test
## x11(12,2)
plotSummary(ETn_test,groupby='feature',scale_threshold=10,
align_lab='Integration site')
## -------------------------------------------------------------------------------------------
## -------------------------------------------------------------------------------------------
## EXAMPLE ON SIMULATED DATA
## -------------------------------------------------------------------------------------------
## -------------------------------------------------------------------------------------------
examples_path <- system.file("extdata",package="IWTomics")
## Four region datasets:
## three different types of elements and one control
datasets=read.table(file.path(examples_path,"datasets.txt"),
sep="\t",header=TRUE,stringsAsFactors=FALSE)
datasets
## Two different features measured in all four types regions
features_datasetsTable=read.table(file.path(examples_path,"features_datasetsTable.txt"),
sep="\t",header=TRUE,stringsAsFactors=FALSE)
features_datasetsTable
## -------------------------------------------------------------------------------------------
## GET DATA AND PLOT
## -------------------------------------------------------------------------------------------
## Get genomic regions for the four region datasets,
## and the two features from Table files for each region dataset
regionsFeatures=IWTomicsData(datasets$regionFile,features_datasetsTable[,3:6],'center',
datasets$id,datasets$name,
features_datasetsTable$id,features_datasetsTable$name,
path=file.path(examples_path,'files'))
## Plot the pointwise boxplot of the curves in the different region datasets
plot(regionsFeatures)
## -------------------------------------------------------------------------------------------
## PERFORM THE TEST
## -------------------------------------------------------------------------------------------
## Two sample test for the two features in the comparisons
## 'elem1' vs 'control', 'elem2' vs 'control'
## and 'elem3' vs 'control'
regionsFeatures_test=IWTomicsTest(regionsFeatures,id_region1=c('elem1','elem2','elem3'),
id_region2=c('control','control','control'))
## Adjusted p-value for each comparison and each feature
adjusted_pval(regionsFeatures_test)
## Plotting the results of the two sample test
plotTest(regionsFeatures_test)
## Summary plot of the two sample tests
## x11(10,5)
plotSummary(regionsFeatures_test,groupby='feature',align_lab='Center')
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.