Nothing
#' Evaluate introns and exons expressions from BAM or SAM files
#' @description Given a TranscriptDb object and a list of BAM or SAM files
#' "quantifyExpressionsFormBAMs" evaluates exons and introns expressions
#' and the associated variances per each gene.
#' @param txdb A TranscriptDB object
#' @param BAMfiles A vector of paths
#' @param experimentalDesign A numerical which reports the desing of the experiment in terms of time points and replicates.
#' Time points must be ordered according to the sequence of files submitted for the analysis, these labels characterize
#' different files as replicates of a given condition.
#' @param by A character, either "gene" or "tx", indicating if expressions and counts should be summarized at the levels of
#' genes or transcripts. "gene" by default.
#' In case "tx" is selected, we suggest to set argument "allowMultiOverlap" to TRUE, otherwise the reads mapping to overlapping
#' transcripts of the same gene will remain unassigned.
#' @param countMultiMappingReads A logical, if multimapping reads should be counted, FALSE by default. Multimap reads are
#' identified using the tag "NH" in the bam/sam file.
#' @param allowMultiOverlap A logical, indicating if a read is allowed to be assigned to more than one feature, FALSE by default
#' @param prioritizeExons A logical, indicating whether reads assigned to exon shold not be accounted for intron counts.
#' If set to FALSE, reads with shared overlap between an exon and the following intron will be assigned also to introns. This could improve
#' intronic quantification in experimental settings (including polyA library preparation) or compact genomes were intronic reads are
#' sampled at a very low rate compared to exonic reads. By default, TRUE.
#' @param libsize A character, either "assigned" or "all", indicating whether the libsize for expression normalization should include all
#' mapped reads or only the reads assigned to any of the features. By default, "assigned" is selected.
#' @param strandSpecific Numeric, 0 if no strand-specific read counting should be performed, 1 stranded, 2 reversely-stranded. 0 by default
#' @param isPairedEnd A logical, if paired-end reads are used, FALSE by default
#' @param DESeq2 A logical, if TRUE exons and introns variances are evaluated through the package DESeq2, if FALSE through plgem
#' @param varSamplingCondition A character reporting which experimental condition should be used to sample the variance if DESeq2 = FALSE.
#' @param BPPARAM Parallelization parameters for bplapply. By default SerialParam()
#' By default, the first element of "experimentalDesign" with replicates.
#' @return A list containing expressions and associated variances for exons and introns.
#' @examples
#' if( Sys.info()["sysname"] != "Windows" ) {
#' require(TxDb.Mmusculus.UCSC.mm9.knownGene)
#' txdb<-TxDb.Mmusculus.UCSC.mm9.knownGene
#' expDes<-c(0,0,1,1)
#'
#' paths_total<-system.file('extdata/', c('bamRep1.bam'
#' ,'bamRep2.bam'
#' ,'bamRep3.bam'
#' ,'bamRep4.bam')
#' ,package='INSPEcT')
#'
#' matExp<-quantifyExpressionsFromBAMs(txdb=txdb
#' ,BAMfiles=paths_total
#' ,experimentalDesign=expDes)
#' }
quantifyExpressionsFromBAMs <- function(txdb
, BAMfiles
, experimentalDesign
, by = c('gene','tx')
, countMultiMappingReads = FALSE
, allowMultiOverlap = FALSE
, prioritizeExons = TRUE
, libsize = c('assigned','all')
, strandSpecific = 0
, isPairedEnd = FALSE
, DESeq2 = TRUE
, varSamplingCondition = NULL
, BPPARAM = SerialParam())
{
############################################
### CHECK ARGUMENTS ########################
############################################
# txdb
if( class(txdb) != 'TxDb' )
stop('quantifyExpressionsFromBAMs: "txdb" must be an object of TxDb class.')
# BAMfiles
if( any(!file.exists(BAMfiles)) )
stop('quantifyExpressionsFromBAMs: at least one file specified in "BAMfiles" argument does not exist.')
# experimentalDesign
if(length(experimentalDesign)!=length(BAMfiles))
stop('quantifyExpressionsFromBAMs: each bam file must be accounted in the experimentalDesign.')
if(all(table(experimentalDesign)==1))
stop("quantifyExpressionsFromBAMs: at least one replicate is required.")
# by
by <- by[1]
if( !is.character(by) )
stop('quantifyExpressionsFromBAMs: "by" must be either "tx" or "gene".')
if( !( by %in% c('gene','tx') ) )
stop('quantifyExpressionsFromBAMs: "by" must be either "tx" or "gene".')
# countMultiMappingReads
if( !is.logical(countMultiMappingReads) )
stop('quantifyExpressionsFromBAMs: "countMultiMappingReads" must be a logical.')
# allowMultiOverlap
if( !is.logical(allowMultiOverlap) )
stop('quantifyExpressionsFromBAMs: "allowMultiOverlap" must be a logical.')
# prioritizeExons
if( !is.logical(prioritizeExons) )
stop('quantifyExpressionsFromBAMs: "prioritizeExons" must be a logical.')
# strandSpecific
if( !( strandSpecific %in% c(0,1,2) ) )
stop('quantifyExpressionsFromBAMs: "strandSpecific" must be either a numeric between 0 and 2.')
# isPairedEnd
if( !is.logical(isPairedEnd) )
stop('quantifyExpressionsFromBAMs: "isPairedEnd" must be a logical.')
# DESeq2
if( !is.logical(DESeq2) )
stop('quantifyExpressionsFromBAMs: "DESeq2" must be a logical.')
# varSamplingCondition
if( !DESeq2 ) {
if( is.null(varSamplingCondition) ) {
varSamplingCondition <- names(which(table(experimentalDesign)>1)[1])
} else {
if( length(which(as.character(experimentalDesign) == varSamplingCondition)) < 2 )
stop('quantifyExpressionsFromBAMs: if DESeq2 is FALSE varSamplingCondition must be an experimental condition with replicates.')
}
}
############################################
### MAKE ANNOTATION ########################
############################################
message('Generating annotation from txdb...')
by <- by[1]
if( by=="gene" ) {
exonsDB <- reduce(exonsBy(txdb ,'gene'))
exonsDB <- exonsDB[elementNROWS(range(exonsDB))==1]
intronsDB <- psetdiff(unlist(range(exonsDB)),exonsDB)
intronsDB <- intronsDB[elementNROWS(intronsDB)>0]
} else if( by=="tx" ){
exonsDB <- exonsBy(txdb ,'tx', use.names=TRUE)
intronsDB <- intronsByTranscript(txdb, use.names=TRUE)
intronsDB <- intronsDB[elementNROWS(intronsDB)>0]
} else {
stop("quantifyExpressionsFromBAMs: argument 'by' not recognized.")
}
############################################
### MAKE COUNTS FROM BAM ###################
############################################
if( is.null(names(BAMfiles)) ) {
replicate_id <- unlist(lapply(split(experimentalDesign, experimentalDesign), seq_along))
names(BAMfiles) <- paste(experimentalDesign, paste0('rep',replicate_id), sep='_')
}
iecounts <- bplapply(BAMfiles, function(bamfile)
{
message(paste('##### - File:',bamfile,'- #####'))
if( countMultiMappingReads ) {
message('Importing bamfile...')
if( isPairedEnd )
samTab <- readGAlignmentPairs(bamfile)
else
samTab <- readGAlignments(bamfile)
} else { # countMultiMappingReads==FALSE
message('Importing bamfile...')
if( isPairedEnd )
samTab <- readGAlignmentPairs(bamfile, param=ScanBamParam(tagFilter=list('NH'=1)))
else
samTab <- readGAlignments(bamfile, param=ScanBamParam(tagFilter=list('NH'=1)))
if( length(samTab)==0 ) stop('No alignments imported.')
}
# match seqlevels based on the name (must be contained within) and
# sequence length (must be equal)
samTab <- matchSeqnames(match_object=samTab, ref_object=exonsDB)
if( strandSpecific == 2 ) samTab <- invertStrand(samTab)
message('Counting reads on exon features...')
foOut <- findOverlaps(samTab,exonsDB,ignore.strand=strandSpecific==0)
onfeature <- unique(queryHits(foOut))
if( allowMultiOverlap ) {
Unassigned_Ambiguity <- 0
Assigned_Exons <- length(onfeature)
} else {
ambiguous_reads <- duplicated(queryHits(foOut))|duplicated(queryHits(foOut),fromLast=TRUE)
Unassigned_Ambiguity <- length(unique(queryHits(foOut)[ambiguous_reads]))
Assigned_Exons <- length(which(!ambiguous_reads))
foOut <- foOut[!ambiguous_reads]
}
exonCounts <- table(factor(subjectHits(foOut), levels=1:subjectLength(foOut)))
names(exonCounts) <- names(exonsDB)
message('Counting reads on intron features...')
if( length(onfeature)>0 & prioritizeExons ) samTab <- samTab[-onfeature] # remove reads falling on exons
foOut <- findOverlaps(samTab,intronsDB,ignore.strand=strandSpecific==0)
onfeature <- unique(queryHits(foOut))
if( allowMultiOverlap ) {
Unassigned_Ambiguity <- 0
Assigned_Introns <- length(onfeature)
} else {
ambiguous_reads <- duplicated(queryHits(foOut))|duplicated(queryHits(foOut),fromLast=TRUE)
Unassigned_Ambiguity <- Unassigned_Ambiguity + length(unique(queryHits(foOut)[ambiguous_reads]))
Assigned_Introns <- length(which(!ambiguous_reads))
foOut <- foOut[!ambiguous_reads]
}
intronCounts <- table(factor(subjectHits(foOut), levels=1:subjectLength(foOut)))
names(intronCounts) <- names(intronsDB)
Unassigned_NoFeatures <- length(samTab) - length(onfeature)
stat <- c(
Unassigned_Ambiguity=Unassigned_Ambiguity,
Assigned_Exons=Assigned_Exons,
Assigned_Introns=Assigned_Introns,
Unassigned_NoFeatures=Unassigned_NoFeatures
)
return(list(exonCounts=exonCounts, intronCounts=intronCounts, countsStats=stat))
},BPPARAM=BPPARAM)
allcounts <- lapply(c(exonsCounts="exonCounts",intronsCounts="intronCounts",countsStats="countsStats")
, function(name) sapply(iecounts,'[[',name))
libsize <- colSums(allcounts$countsStats[c('Assigned_Exons','Assigned_Introns'),,drop=FALSE])
exonsWidths <- sapply(width(exonsDB),sum)
intronsWidths <- sapply(width(intronsDB),sum)
out <- quantifyExpressionsFromTrCounts(allcounts = allcounts
, experimentalDesign = experimentalDesign
, exonsWidths=exonsWidths
, intronsWidths=intronsWidths
, libsize=libsize
, DESeq2 = DESeq2
, varSamplingCondition = varSamplingCondition)
out <- c( out, list(exonsWidths=exonsWidths, intronsWidths=intronsWidths), allcounts )
return(out)
}
# look for possible sequence matches between two genomic annotaion objects
# where the name of the match sequence is included within the name
# of the reference and with the same sequence length
matchSeqnames <- function(match_object, ref_object) {
match_seqnames <- seqnames(seqinfo(match_object))
ref_seqnames <- seqnames(seqinfo(ref_object))
possible_name_matches <- lapply(match_seqnames, function(x) grep(x, ref_seqnames))
match_seqlengths <- seqlengths(seqinfo(match_object))
ref_seqlengths <- seqlengths(seqinfo(ref_object))
possible_length_matches <- lapply(match_seqlengths, function(x) which(ref_seqlengths==x))
both_matches <- lapply(seq_along(possible_name_matches), function(i) {
intersect(possible_name_matches[[i]], possible_length_matches[[i]])
})
names(both_matches) <- match_seqnames
good_matches <- sapply(both_matches, length) == 1
seqlevels(match_object)[good_matches] <- ref_seqnames[unlist(both_matches[good_matches])]
return(match_object)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.