Nothing
#####
# Identify relatives from ibd coefficient estimates
#####
ibdAssignRelatedness <- function(
k0, # vector of k0 estimates
k1, # parallel vector of k1 estimates
alpha=.05, # significance level - finds 100(1-alpha)% predicition intervals/ellipse
m = 0.04, # width of rectangle along diagaonal line (distance from diagonal)
po.w = 0.1, # width of parent-offspring rectangle
po.h = 0.1, # height of parent-offspring rectangle
dup.w = 0.1, # width of duplicate rectangle
dup.h = 0.1, # height of duplicate rectangle
un.w = 0.25, # width of unrelated rectangle
un.h = 0.25 # height of unrelated rectangle
){
# returns a vector of assignments to "PO", "FS", "HS", "FC","U" (unrelated) and "Q" for everything else, for each pair of (k0,k1)
# if(length(k0)!=length(k1)) stop("k0 and k1 must be parallel vectors of the same length")
# to identify PO within the rectangle
po.sel <- k0 < po.w & k1 > 1-po.h
# to identify duplicates within rectangle
dup.sel <- k0 < dup.w & k1 < dup.h
# identify full sibs, half sibs, first cousins
# to identify full sibs within the ellipse -
FS<-GWASTools::relationsMeanVar$FullSibs
mean.vec<-FS$mean #vector
sig.inv<-FS$invCov
n0<-length(k0)
X<-matrix(c(k0,k1),2,n0,byrow=TRUE)
Mn<-matrix(rep(mean.vec,n0),2,n0)
diff<-X-Mn
tmp<-sig.inv%*%diff
prob<-rep(NA,n0)
for(i in 1:n0){
prob[i]<-1-pchisq(diff[,i]%*%tmp[,i],2)
}
fs.sel<-prob>= alpha #inside ellipse
sdm<-abs(qnorm(alpha/2)) # sd multiplier for determining half-sib, first cousin rectangles
# to identify half-sibs within rectangle parallel to diagonal
# ends of the rectangle on the diagonal
HS<-GWASTools::relationsMeanVar$HalfSibs
d<-sdm*sqrt(HS$var) # +/- d from k1-mean gives 100(1-alpha)% prediction interval for k1
hsm<-HS$mean[2]
y1<-hsm-d;x1<-1-y1
y0<-hsm+d; x0<-1-y0
# find the nearest point on the diagonal line
x <- (1 + k0 - k1)/2; y <- (1 + k1 - k0)/2
# is it within the diagonal segment
chk1 <- x0 < x & x < x1 & y1 < y & y < y0
# is the point within perpendicular distance m of the diagonal
chk2 <- (k0 - x)^2 + (k1 - y)^2 < m^2
hs.sel <- chk1 & chk2
# to identify first cousins within the rectangle parallel to diagonal
# ends of the rectangle on the diagonal
C<-GWASTools::relationsMeanVar$FirstCousins
d<-sdm*sqrt(C$var)
fcm<-C$mean[2]
y1<-fcm-d;x1<-1-y1
y0<-fcm+d; x0<-1-y0
# find the nearest point on the diagonal line
x <- (1 + k0 - k1)/2; y <- (1 + k1 - k0)/2
# is it within the diagonal segment
chk1 <- x0 < x & x < x1 & y1 < y & y < y0
# is the point within perpendicular distance m of the diagonal
chk2 <- (k0 - x)^2 + (k1 - y)^2 < m^2
fc.sel <- chk1 & chk2
# check for overlap
rels <- po.sel & dup.sel & fs.sel & hs.sel & fc.sel
if(any(rels)) stop("one or more pairs assigned to more than one relationship")
# unrelated
rels <- po.sel | dup.sel | fs.sel | hs.sel | fc.sel
un.sel <- !rels & k0 > 1 - un.w & k1 < un.h
# combine logical vectors to get vector of assignments
asnmt <- rep("Q", length(k0))
asnmt[po.sel] <- "PO"
asnmt[dup.sel] <- "Dup"
asnmt[fs.sel] <- "FS"
asnmt[hs.sel] <- "Deg2"
asnmt[fc.sel] <- "Deg3"
asnmt[un.sel] <- "U"
return(asnmt)
}
ibdAssignRelatednessKing <- function(
ibs0, # vector of ibs0 estimates
kc, # vector of kinship coefficient estimates
cut.kc.dup=1/(2^(3/2)), # kinship coefficient threshold for duplicates
cut.kc.fs=1/(2^(5/2)), # kc threshold for deg 1 relatives
cut.kc.deg2=1/(2^(7/2)), # kc threshold for deg2 relatives
cut.kc.deg3=1/(2^(9/2)), # kc threshold for deg3 relatives
cut.ibs0.err=0.003 # should be 0 for PO, but sometimes is greater due to genotyping error.
){
## returns a vector of assignments to "PO", "FS", "HS", "FC","U" (unrelated) and "Q" for everything else, for each pair of (k0,k1)
## default thresholds for assigning relationships use kinship coefficients in table 1 of Manichaikul (2010) - KING paper
# if(length(ibs0)!=length(kc)) stop("ibs0 and kc must be parallel vectors of the same length")
dup.sel <- kc > cut.kc.dup
po.sel <- kc <= cut.kc.dup & kc > cut.kc.fs & ibs0 <= cut.ibs0.err
fs.sel <- kc <= cut.kc.dup & kc > cut.kc.fs & ibs0 > cut.ibs0.err
d2.sel <- kc <= cut.kc.fs & kc > cut.kc.deg2
d3.sel <- kc <= cut.kc.deg2 & kc > cut.kc.deg3
un.sel <- kc <= cut.kc.deg3
# check for overlap - should be none
rels <- po.sel & dup.sel & fs.sel & d2.sel & d3.sel
if (any(rels)) stop("one or more pairs assigned to more than one relationship")
rels <- po.sel | dup.sel | fs.sel | d2.sel | d3.sel
un.sel <- !rels
asnmt <- rep("Q", length(kc))
asnmt[dup.sel] <- "Dup"
asnmt[po.sel] <- "PO"
asnmt[fs.sel] <- "FS"
asnmt[d2.sel] <- "Deg2"
asnmt[d3.sel] <- "Deg3"
asnmt[un.sel] <- "U"
return(asnmt)
}
kingIBS0FSCI <- function(freq, alpha = 0.01){
FS <- GWASTools::relationsMeanVar$FullSibs
k0lim <- as.vector(FS$mean[1] + sqrt(FS$cov[1,1]) %o% qnorm(c(0.5, alpha/2, 1-alpha/2)))
val <- mean(2*freq^2*(1-freq)^2, na.rm=TRUE)
return(setNames(val*k0lim, c("Est", "LL", "UL")))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.