Nothing
## ---- eval=FALSE--------------------------------------------------------------
# library(MultiAssayExperiment)
# library(ELMER.data)
# library(ELMER)
# # get distal probes that are 2kb away from TSS on chromosome 1
# distal.probes <- get.feature.probe(genome = "hg19",
# met.platform = "450K",
# rm.chr = paste0("chr",c(2:22,"X","Y")))
# data(LUSC_RNA_refined,package = "ELMER.data") # GeneExp
# data(LUSC_meth_refined,package = "ELMER.data") # Meth
#
# mae <- createMAE(exp = GeneExp,
# met = Meth,
# save = TRUE,
# linearize.exp = TRUE,
# save.filename = "mae.rda",
# filter.probes = distal.probes,
# met.platform = "450K",
# genome = "hg19",
# TCGA = TRUE)
#
# group.col <- "definition"
# group1 <- "Primary solid Tumor"
# group2 <- "Solid Tissue Normal"
# dir.out <- "result"
# diff.dir <- "hypo" # Search for hypomethylated probes in group 1
#
# sig.diff <- get.diff.meth(data = mae,
# group.col = group.col,
# group1 = group1,
# group2 = group2,
# minSubgroupFrac = 0.2,
# sig.dif = 0.3,
# diff.dir = diff.dir,
# cores = 1,
# dir.out = dir.out,
# pvalue = 0.01)
#
#
# nearGenes <- GetNearGenes(data = mae,
# probes = sig.diff$probe,
# numFlankingGenes = 20) # 10 upstream and 10 dowstream genes
#
# pair <- get.pair(data = mae,
# group.col = group.col,
# group1 = group1,
# mode = "unsupervised",
# group2 = group2,
# nearGenes = nearGenes,
# diff.dir = diff.dir,
# minSubgroupFrac = 0.4, # % of samples to use in to create groups U/M
# permu.dir = file.path(dir.out,"permu"),
# permu.size = 100, # Please set to 100000 to get significant results
# raw.pvalue = 0.05,
# Pe = 0.01, # Please set to 0.001 to get significant results
# filter.probes = TRUE, # See preAssociationProbeFiltering function
# filter.percentage = 0.05,
# filter.portion = 0.3,
# dir.out = dir.out,
# cores = 1,
# label = diff.dir)
#
# # Identify enriched motif for significantly hypomethylated probes which
# # have putative target genes.
# enriched.motif <- get.enriched.motif(data = mae,
# probes = pair$Probe,
# dir.out = dir.out,
# label = diff.dir,
# min.incidence = 10,
# lower.OR = 1.1)
#
# TF <- get.TFs(data = mae,
# mode = "unsupervised",
# group.col = group.col,
# group1 = group1,
# group2 = group2,
# enriched.motif = enriched.motif,
# dir.out = dir.out,
# cores = 1,
# label = diff.dir)
#
#
## ---- eval=FALSE--------------------------------------------------------------
# library(stringr)
# library(TCGAbiolinks)
# library(dplyr)
# library(ELMER)
# library(MultiAssayExperiment)
# library(parallel)
# library(readr)
# dir.create("~/paper_elmer/",showWarnings = FALSE)
# setwd("~/paper_elmer/")
#
# file <- "mae_BRCA_hg38_450K_no_ffpe.rda"
# if(file.exists(file)) {
# mae <- get(load(file))
# } else {
# getTCGA(disease = "BRCA", # TCGA disease abbreviation (BRCA,BLCA,GBM, LGG, etc)
# basedir = "DATA", # Where data will be downloaded
# genome = "hg38") # Genome of refenrece "hg38" or "hg19"
#
# distal.probes <- get.feature.probe(feature = NULL,
# genome = "hg38",
# met.platform = "450K")
#
# mae <- createMAE(exp = "~/paper_elmer/Data/BRCA/BRCA_RNA_hg38.rda",
# met = "~/paper_elmer/Data/BRCA/BRCA_meth_hg38.rda",
# met.platform = "450K",
# genome = "hg38",
# linearize.exp = TRUE,
# filter.probes = distal.probes,
# met.na.cut = 0.2,
# save = FALSE,
# TCGA = TRUE)
# # Remove FFPE samples from the analysis
# mae <- mae[,!mae$is_ffpe]
#
# # Get molecular subytpe information from cell paper and more metadata (purity etc...)
# # https://doi.org/10.1016/j.cell.2015.09.033
# file <- "http://ars.els-cdn.com/content/image/1-s2.0-S0092867415011952-mmc2.xlsx"
# downloader::download(file, basename(file))
# subtypes <- readxl::read_excel(basename(file), skip = 2)
#
# subtypes$sample <- substr(subtypes$Methylation,1,16)
# meta.data <- merge(colData(mae),subtypes,by = "sample",all.x = T)
# meta.data <- meta.data[match(colData(mae)$sample,meta.data$sample),]
# meta.data <- S4Vectors::DataFrame(meta.data)
# rownames(meta.data) <- meta.data$sample
# stopifnot(all(meta.data$patient == colData(mae)$patient))
# colData(mae) <- meta.data
# save(mae, file = "mae_BRCA_hg38_450K_no_ffpe.rda")
# }
# dir.out <- "BRCA_unsupervised_hg38/hypo"
# cores <- 10
# diff.probes <- get.diff.meth(data = mae,
# group.col = "definition",
# group1 = "Primary solid Tumor",
# group2 = "Solid Tissue Normal",
# diff.dir = "hypo", # Get probes hypometh. in group 1
# cores = cores,
# minSubgroupFrac = 0.2, # % group samples used.
# pvalue = 0.01,
# sig.dif = 0.3,
# dir.out = dir.out,
# save = TRUE)
#
# # For each differently methylated probes we will get the
# # 20 nearby genes (10 downstream and 10 upstream)
# nearGenes <- GetNearGenes(data = mae,
# probes = diff.probes$probe,
# numFlankingGenes = 20)
#
# # This step is the most time consuming. Depending on the size of the groups
# # and the number of probes found previously it migh take hours
# Hypo.pair <- get.pair(data = mae,
# nearGenes = nearGenes,
# group.col = "definition",
# group1 = "Primary solid Tumor",
# group2 = "Solid Tissue Normal",
# permu.dir = paste0(dir.out,"/permu"),
# permu.size = 10000,
# mode = "unsupervised",
# minSubgroupFrac = 0.4, # 40% of samples to create U and M
# raw.pvalue = 0.001,
# Pe = 0.001,
# filter.probes = TRUE,
# filter.percentage = 0.05,
# filter.portion = 0.3,
# dir.out = dir.out,
# cores = cores,
# label = "hypo")
# # Number of pairs: 2950
#
#
# enriched.motif <- get.enriched.motif(data = mae,
# min.motif.quality = "DS",
# probes = unique(Hypo.pair$Probe),
# dir.out = dir.out,
# label = "hypo",
# min.incidence = 10,
# lower.OR = 1.1)
# TF <- get.TFs(data = mae,
# group.col = "definition",
# group1 = "Primary solid Tumor",
# group2 = "Solid Tissue Normal",
# minSubgroupFrac = 0.4, # Set to 1 if supervised mode
# enriched.motif = enriched.motif,
# dir.out = dir.out,
# cores = cores,
# label = "hypo")
#
## ---- eval=FALSE--------------------------------------------------------------
# library(stringr)
# library(TCGAbiolinks)
# library(dplyr)
# library(ELMER)
# library(MultiAssayExperiment)
# library(parallel)
# library(readr)
# #-----------------------------------
# # 1 - Samples
# # ----------------------------------
# dir.create("~/paper_elmer/",showWarnings = FALSE)
# setwd("~/paper_elmer/")
#
# file <- "mae_BRCA_hg38_450K_no_ffpe.rda"
# if(file.exists(file)) {
# mae <- get(load(file))
# } else {
# getTCGA(disease = "BRCA", # TCGA disease abbreviation (BRCA,BLCA,GBM, LGG, etc)
# basedir = "DATA", # Where data will be downloaded
# genome = "hg38") # Genome of refenrece "hg38" or "hg19"
#
# distal.probes <- get.feature.probe(feature = NULL,
# genome = "hg38",
# met.platform = "450K")
#
# mae <- createMAE(exp = "DATA/BRCA/BRCA_RNA_hg38.rda",
# met = "DATA/BRCA/BRCA_meth_hg38.rda",
# met.platform = "450K",
# genome = "hg38",
# linearize.exp = TRUE,
# filter.probes = distal.probes,
# met.na.cut = 0.2,
# save = FALSE,
# TCGA = TRUE)
# # Remove FFPE samples from the analysis
# mae <- mae[,!mae$is_ffpe]
#
# # Get molecular subytpe information from cell paper and more metadata (purity etc...)
# # https://doi.org/10.1016/j.cell.2015.09.033
# file <- "http://ars.els-cdn.com/content/image/1-s2.0-S0092867415011952-mmc2.xlsx"
# downloader::download(file, basename(file))
# subtypes <- readxl::read_excel(basename(file), skip = 2)
#
# subtypes$sample <- substr(subtypes$Methylation,1,16)
# meta.data <- merge(colData(mae),subtypes,by = "sample",all.x = T)
# meta.data <- meta.data[match(colData(mae)$sample,meta.data$sample),]
# meta.data <- S4Vectors::DataFrame(meta.data)
# rownames(meta.data) <- meta.data$sample
# stopifnot(all(meta.data$patient == colData(mae)$patient))
# colData(mae) <- meta.data
# save(mae, file = "mae_BRCA_hg38_450K_no_ffpe.rda")
# }
#
# cores <- 6
# direction <- c( "hypo","hyper")
# genome <- "hg38"
# group.col <- "PAM50"
# groups <- t(combn(na.omit(unique(colData(mae)[,group.col])),2))
# for(g in 1:nrow(groups)) {
# group1 <- groups[g,1]
# group2 <- groups[g,2]
# for (j in direction){
# tryCatch({
# message("Analysing probes ",j, "methylated in ", group1, " vs ", group2)
# dir.out <- paste0("BRCA_supervised_",genome,"/",group1,"_",group2,"/",j)
# dir.create(dir.out, recursive = TRUE)
# #--------------------------------------
# # STEP 3: Analysis |
# #--------------------------------------
# # Step 3.1: Get diff methylated probes |
# #--------------------------------------
# Sig.probes <- get.diff.meth(data = mae,
# group.col = group.col,
# group1 = group1,
# group2 = group2,
# sig.dif = 0.3,
# minSubgroupFrac = 1,
# cores = cores,
# dir.out = dir.out,
# diff.dir = j,
# pvalue = 0.01)
# if(nrow(Sig.probes) == 0) next
# #-------------------------------------------------------------
# # Step 3.2: Identify significant probe-gene pairs |
# #-------------------------------------------------------------
# # Collect nearby 20 genes for Sig.probes
# nearGenes <- GetNearGenes(data = mae,
# probe = Sig.probes$probe)
#
# pair <- get.pair(data = mae,
# nearGenes = nearGenes,
# group.col = group.col,
# group1 = group1,
# group2 = group2,
# permu.dir = paste0(dir.out,"/permu"),
# dir.out = dir.out,
# mode = "supervised",
# diff.dir = j,
# cores = cores,
# label = j,
# permu.size = 10000,
# raw.pvalue = 0.001)
#
# Sig.probes.paired <- readr::read_csv(paste0(dir.out,
# "/getPair.",j,
# ".pairs.significant.csv"))[,1, drop = TRUE]
#
#
# #-------------------------------------------------------------
# # Step 3.3: Motif enrichment analysis on the selected probes |
# #-------------------------------------------------------------
# if(length(Sig.probes.paired) > 0 ){
# #-------------------------------------------------------------
# # Step 3.3: Motif enrichment analysis on the selected probes |
# #-------------------------------------------------------------
# enriched.motif <- get.enriched.motif(probes = Sig.probes.paired,
# dir.out = dir.out,
# data = mae,
# label = j,
# plot.title = paste0("BRCA: OR for paired probes ",
# j, "methylated in ",
# group1, " vs ",group2))
# motif.enrichment <- readr::read_csv(paste0(dir.out,
# "/getMotif.",j,
# ".motif.enrichment.csv"))
# if(length(enriched.motif) > 0){
# #-------------------------------------------------------------
# # Step 3.4: Identifying regulatory TFs |
# #-------------------------------------------------------------
# print("get.TFs")
#
# TF <- get.TFs(data = mae,
# enriched.motif = enriched.motif,
# dir.out = dir.out,
# mode = "supervised",
# group.col = group.col,
# group1 = group1,
# diff.dir = j,
# group2 = group2,
# cores = cores,
# label = j)
# TF.meth.cor <- get(load(paste0(dir.out,
# "/getTF.",j,
# ".TFs.with.motif.pvalue.rda")))
# save(mae,TF, enriched.motif, Sig.probes.paired,
# pair, nearGenes, Sig.probes, motif.enrichment,
# TF.meth.cor,
# file = paste0(dir.out,"/ELMER_results_",j,".rda"))
# }
# }
# }, error = function(e){
# message(e)
# })
# }
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.