Description Usage Arguments Examples
Plots an elbow curve and its associated data:
the upper and lower elbow limits for the curve
the upper, lower, and median initial condition Elbow plots
the \logχ^2 p-value for the Elbow curve
the variance for the upper and lower Elbow cut-off values
1 2 3 4 | plot_elbow(my_data, upper_limit, lower_limit, pvalue1,
prowmin, prowmax, prowmedian, max_upper_variance,
min_upper_variance, max_lower_variance,
min_lower_variance, gtitle = "")
|
my_data |
A table (data.frame) to plot. The columns in the table should be as follows:
|
upper_limit |
the upper limit/cut-off for the elbow. |
lower_limit |
the lower limit/cut-off for the elbow. |
pvalue1 |
the \logχ^2 p-value for the elbow curve. |
prowmin |
the error limit based on the maximum value for each probe. |
prowmax |
the error limit based on the minimum value for each probe. |
prowmedian |
the null (median) value for each probe. |
max_upper_variance |
the maximum upper elbow limit (most positive). |
min_upper_variance |
the minimum upper elbow limit. |
max_lower_variance |
the maximum lower elbow limit. |
min_lower_variance |
the minimum lower elbow limit (most negative). |
gtitle |
the title to display for the graph. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | # read in the EcoliMutMA sample data from the package
data(EcoliMutMA, package="ELBOW")
csv_data <- EcoliMutMA
# - OR - Read in a CSV file (uncomment - remove the #'s
# - from the line below and replace 'filename' with
# the CSV file's filename)
# csv_data <- read.csv(filename)
# set the number of initial and final condition replicates both to three
init_count <- 3
final_count <- 3
# Parse the probes, intial conditions and final conditions
# out of the CSV file. Please see: extract_working_sets
# for more information.
#
# init_count should be the number of columns associated with
# the initial conditions of the experiment.
# final_count should be the number of columns associated with
# the final conditions of the experiment.
working_sets <- extract_working_sets(csv_data, init_count, final_count)
probes <- working_sets[[1]]
initial_conditions <- working_sets[[2]]
final_conditions <- working_sets[[3]]
# Uncomment to output the plot to a PNG file (optional)
# png(file="output_plot.png")
my_data <- replicates_to_fold(probes, initial_conditions, final_conditions)
# compute the elbow for the dataset
limits <- do_elbow(data.frame(my_data$fold))
plus_minus <- elbow_variance(probes, initial_conditions, final_conditions)
max_upper_variance <- plus_minus$max_upper
min_upper_variance <- plus_minus$min_upper
max_lower_variance <- plus_minus$max_lower
min_lower_variance <- plus_minus$min_lower
# rounded number for nice appearance graph
upper_limit <- round(limits[[1]],digits=2)
# rounded number nice appearance for graph
lower_limit <- round(limits[[2]],digits=2)
p_limits <- null_variance(my_data, upper_limit, lower_limit, initial_conditions)
prowmin <- p_limits[[1]]
prowmax <- p_limits[[2]]
prowmedian <- p_limits[[3]]
pvalue1 <- get_pvalue(my_data, upper_limit, lower_limit)
plot_elbow(my_data, upper_limit, lower_limit, pvalue1, prowmin, prowmax, prowmedian, max_upper_variance, min_upper_variance, max_lower_variance, min_lower_variance, "Title of the ELBOW Plot")
|
[1] "rowsums"
[1] "fold"
[1] 0.06873333 -0.08933333 0.34013333 0.19313333 0.00940000 -0.02596667
[1] "bound data"
ID_REF fold
1 1001_115 0.06873333
2 1002_33 -0.08933333
3 1003_942 0.34013333
4 1004_552 0.19313333
5 1005_657 0.00940000
6 1006_393 -0.02596667
[1] "firsta_data"
ID_REF fold
1 1001_115 0.06873333
2 1002_33 -0.08933333
3 1003_942 0.34013333
4 1004_552 0.19313333
5 1005_657 0.00940000
6 1006_393 -0.02596667
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] 0.2138 -0.2044 0.1604 0.1214 -0.1342 -0.0477
[1] "bound data"
ID_REF fold
1 1001_115 0.2138
2 1002_33 -0.2044
3 1003_942 0.1604
4 1004_552 0.1214
5 1005_657 -0.1342
6 1006_393 -0.0477
[1] "firsta_data"
ID_REF fold
1 1001_115 0.2138
2 1002_33 -0.2044
3 1003_942 0.1604
4 1004_552 0.1214
5 1005_657 -0.1342
6 1006_393 -0.0477
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] 0.2071 0.0046 0.0323 0.3172 0.0230 -0.0754
[1] "bound data"
ID_REF fold
1 1001_115 0.2071
2 1002_33 0.0046
3 1003_942 0.0323
4 1004_552 0.3172
5 1005_657 0.0230
6 1006_393 -0.0754
[1] "firsta_data"
ID_REF fold
1 1001_115 0.2071
2 1002_33 0.0046
3 1003_942 0.0323
4 1004_552 0.3172
5 1005_657 0.0230
6 1006_393 -0.0754
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] 0.2611 0.0195 0.0503 0.3531 -0.0252 -0.0441
[1] "bound data"
ID_REF fold
1 1001_115 0.2611
2 1002_33 0.0195
3 1003_942 0.0503
4 1004_552 0.3531
5 1005_657 -0.0252
6 1006_393 -0.0441
[1] "firsta_data"
ID_REF fold
1 1001_115 0.2611
2 1002_33 0.0195
3 1003_942 0.0503
4 1004_552 0.3531
5 1005_657 -0.0252
6 1006_393 -0.0441
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] 0.0346 -0.2222 0.5502 0.0479 -0.0125 0.0560
[1] "bound data"
ID_REF fold
1 1001_115 0.0346
2 1002_33 -0.2222
3 1003_942 0.5502
4 1004_552 0.0479
5 1005_657 -0.0125
6 1006_393 0.0560
[1] "firsta_data"
ID_REF fold
1 1001_115 0.0346
2 1002_33 -0.2222
3 1003_942 0.5502
4 1004_552 0.0479
5 1005_657 -0.0125
6 1006_393 0.0560
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] 0.0279 -0.0132 0.4221 0.2437 0.1447 0.0283
[1] "bound data"
ID_REF fold
1 1001_115 0.0279
2 1002_33 -0.0132
3 1003_942 0.4221
4 1004_552 0.2437
5 1005_657 0.1447
6 1006_393 0.0283
[1] "firsta_data"
ID_REF fold
1 1001_115 0.0279
2 1002_33 -0.0132
3 1003_942 0.4221
4 1004_552 0.2437
5 1005_657 0.1447
6 1006_393 0.0283
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] 0.0819 0.0017 0.4401 0.2796 0.0965 0.0596
[1] "bound data"
ID_REF fold
1 1001_115 0.0819
2 1002_33 0.0017
3 1003_942 0.4401
4 1004_552 0.2796
5 1005_657 0.0965
6 1006_393 0.0596
[1] "firsta_data"
ID_REF fold
1 1001_115 0.0819
2 1002_33 0.0017
3 1003_942 0.4401
4 1004_552 0.2796
5 1005_657 0.0965
6 1006_393 0.0596
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] -0.0828 -0.2743 0.5480 -0.0174 -0.0913 -0.0621
[1] "bound data"
ID_REF fold
1 1001_115 -0.0828
2 1002_33 -0.2743
3 1003_942 0.5480
4 1004_552 -0.0174
5 1005_657 -0.0913
6 1006_393 -0.0621
[1] "firsta_data"
ID_REF fold
1 1001_115 -0.0828
2 1002_33 -0.2743
3 1003_942 0.5480
4 1004_552 -0.0174
5 1005_657 -0.0913
6 1006_393 -0.0621
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] -0.0895 -0.0653 0.4199 0.1784 0.0659 -0.0898
[1] "bound data"
ID_REF fold
1 1001_115 -0.0895
2 1002_33 -0.0653
3 1003_942 0.4199
4 1004_552 0.1784
5 1005_657 0.0659
6 1006_393 -0.0898
[1] "firsta_data"
ID_REF fold
1 1001_115 -0.0895
2 1002_33 -0.0653
3 1003_942 0.4199
4 1004_552 0.1784
5 1005_657 0.0659
6 1006_393 -0.0898
[1] "sorted"
[1] "headers"
[1] "rowsums"
[1] "fold"
[1] -0.0355 -0.0504 0.4379 0.2143 0.0177 -0.0585
[1] "bound data"
ID_REF fold
1 1001_115 -0.0355
2 1002_33 -0.0504
3 1003_942 0.4379
4 1004_552 0.2143
5 1005_657 0.0177
6 1006_393 -0.0585
[1] "firsta_data"
ID_REF fold
1 1001_115 -0.0355
2 1002_33 -0.0504
3 1003_942 0.4379
4 1004_552 0.2143
5 1005_657 0.0177
6 1006_393 -0.0585
[1] "sorted"
[1] "headers"
[1] "upper elbow limit = 0.82 (replicate variance error 0.67 to 1.05 )"
[1] "lower elbow limit = -0.45 ( replicate variance error -0.37 to -0.63 )"
[1] "log chi squared p = 1.08e-44"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.