Likefun: Likelihood Function of the NB-Beta Model

Description Usage Arguments Value Author(s) References Examples

View source: R/Likefun.R

Description

'Likefun' specifies the Likelihood Function of the NB-Beta Model.

Usage

1
Likefun(ParamPool, InputPool)

Arguments

ParamPool

The parameters that will be estimated in EM.

InputPool

The control parameters that will not be estimated in EM.

Value

The function will return the log-likelihood.

Author(s)

Ning Leng

References

Ning Leng, John A. Dawson, James A. Thomson, Victor Ruotti, Anna I. Rissman, Bart M.G. Smits, Jill D. Haag, Michael N. Gould, Ron M. Stewart, and Christina Kendziorski. EBSeq: An empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics (2013)

Examples

1
2
3
4
5
6
#x1 = c(.6,.7,.3)
#Input = matrix(rnorm(100,100,1), ncol=10)
#RIn = matrix(rnorm(100,200,1), ncol=10)
#InputPool = list(Input[,1:5], Input[,6:10], Input,
#	rep(.1,100), 1, RIn, RIn[,1:5], RIn[,6:10], 100) 
#Likefun(x1, InputPool)

Example output

Loading required package: blockmodeling
To cite package 'blockmodeling' in publications please use package
citation and (at least) one of the articles:

  Žiberna, Aleš (2007). Generalized blockmodeling of valued networks.
  Social Networks 29(1), 105-126.

  Žiberna, Aleš (2008). Direct and indirect approaches to blockmodeling
  of valued networks in terms of regular equivalence. Journal of
  Mathematical Sociology 32(1), 5784.

  Žiberna, Aleš (2014). Blockmodeling of multilevel networks. Social
  Networks 39, 4661. https://doi.org/10.1016/j.socnet.2014.04.002.

  Žiberna, Aleš (2020).  Generalized and Classical Blockmodeling of
  Valued Networks, R package version 1.0.0.

To see these entries in BibTeX format, use 'print(<citation>,
bibtex=TRUE)', 'toBibtex(.)', or set
'options(citation.bibtex.max=999)'.
Loading required package: gplots

Attaching package:gplotsThe following object is masked frompackage:stats:

    lowess

Loading required package: testthat

EBSeq documentation built on Nov. 8, 2020, 6:52 p.m.