Nothing
# This function is used by depecheCoFunction.
# It is only used for datasets with less than 10 000 total observations.
# "Unique" parameters
# inDataFrameUsed: the scaled version of inDataFrame. See initial part of
# depeche function for details.
# firstClusterNumber: this defines if the first number for the cluster
# definitions.
# For information on the other parameters, see depeche.
#' @importFrom parallel detectCores makeCluster stopCluster
#' @importFrom doSNOW registerDoSNOW
#' @importFrom foreach foreach %dopar%
#' @importFrom moments kurtosis
#' @importFrom foreach foreach %dopar%
#' @importFrom gplots heatmap.2
#' @importFrom dplyr sample_n
depecheAllData <- function(inDataFrameUsed, penalty, k, nCores) {
penaltyForRightSize <- penalty * ((nrow(inDataFrameUsed) *
sqrt(ncol(inDataFrameUsed))) / 1450)
dataMat <- data.matrix(inDataFrameUsed)
if (nCores == "default") {
nCores <- floor(detectCores() * 0.875)
if (nCores > 10) {
nCores <- 10
}
}
i <- 1
cl <- makeCluster(nCores, type = "SOCK")
registerDoSNOW(cl)
return_all <- foreach(i = seq_len(21), .packages = "DepecheR") %dopar%
sparse_k_means(dataMat, round(k * 3), penaltyForRightSize, 1, i)
stopCluster(cl)
# Here, the best iteration is retrieved,
# if this is not one with only 1 cluster
logMaxLik <- as.vector(do.call("rbind", lapply(return_all, "[[", 5)))
nClust <- vapply(return_all,
FUN.VALUE = 1,
function(x) sum(rowSums(x[[3]] != 0) != 0)
)
logMaxLikNotOne <- logMaxLik[which(nClust > 1)]
maxN <- max(logMaxLikNotOne)
returnLowest <- return_all[[which(logMaxLik == maxN)[1]]]
# And here, the optimal results are retrieved
clusterVector <- returnLowest$i
clusterCenters <- returnLowest$c
# And here, the optimal results are made
# more dense by removing empty rows and
# columns, etc.
colnames(clusterCenters) <- colnames(inDataFrameUsed)
# Remove all rows and columns that do not
# contain any information
reducedClusterCenters <- clusterCenters[
which(rowSums(clusterCenters) != 0),
which(colSums(clusterCenters) != 0)
]
# In the specific case that only one row
# is left, due to a high penalty, the
# data needs to be converted back to a
# matrix from a vector. The same is done
# if the number of informative variables
# is just one.
if (length(which(rowSums(clusterCenters) != 0)) == 1) {
reducedClusterCenters <- t(reducedClusterCenters)
} else if (length(which(colSums(clusterCenters) != 0) == 1)) {
reducedClusterCenters <- as.matrix(reducedClusterCenters)
}
# Here, the results are combined
dClustResult <- list(clusterVector, reducedClusterCenters)
names(dClustResult) <- c("clusterVector", "clusterCenters")
return(dClustResult)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.