R/dSplsdaPreCalculations.R

Defines functions dSplsdaPreCalculations

# Used internally in dSplsda.
# This function creates the necessary tables with each patient id and each
# cluster separated and the settings for the sPLS-DA analysis.
# For information about hte parameters, see dSplsda.
dSplsdaPreCalculations <- function(clusterVector,
                                   idsVector, groupVector, pairingVector, 
                                   groupName1, groupName2) {
    # Here, the statistical evaluation is
    # performed.  First, the data is divided
    # into each group.
    clusterVectorGroup1 <- clusterVector[groupVector == unique(groupVector)[1]]
    clusterVectorGroup2 <- clusterVector[groupVector == unique(groupVector)[2]]
    idsVectorGroup1 <-
        as.character(idsVector[groupVector == unique(groupVector)[1]])
    idsVectorGroup2 <-
        as.character(idsVector[groupVector == unique(groupVector)[2]])

    # Now, a table with the percentage of
    # cells in each cluster for each
    # individual is created for both groups

    clusterTable1 <-
        as.matrix(as.data.frame.matrix(table(
            clusterVectorGroup1,
            idsVectorGroup1
        )))
    clusterTable2 <-
        as.matrix(as.data.frame.matrix(table(
            clusterVectorGroup2,
            idsVectorGroup2
        )))

    # In the very unlikely event that there
    # is not a single observation for one
    # cluster from one of the groups, this
    # cluster is substituted to that table
    # with a row of zeros.
    if (nrow(clusterTable1) < length(unique(clusterVector))) {
        zeroMat <- matrix(data = 0, nrow = length(unique(clusterVector)) -
            nrow(clusterTable1), ncol = ncol(clusterTable1))

        colnames(zeroMat) <- colnames(clusterTable1)
        allRowNames <- as.character(sort(unique(clusterVector)))
        row.names(zeroMat) <-
            allRowNames[-which(allRowNames %in% row.names(clusterTable1))]
        # Here, rows are added to the cluster
        # table to make the number of rows the
        # same as the unique values of the
        # cluster vector.
        clusterTable1big <- rbind(clusterTable1, zeroMat)

        # The rows of the table are re-sorted
        clusterTable1bigResorted <-
            clusterTable1big[order(as.numeric(row.names(clusterTable1big))), ]
        clusterTable1 <- clusterTable1bigResorted
    }

    # And the same procedure is done for the
    # second group
    if (nrow(clusterTable2) < length(unique(clusterVector))) {
        zeroMat <- matrix(data = 0, nrow = length(unique(clusterVector)) -
            nrow(clusterTable2), ncol = ncol(clusterTable2))

        colnames(zeroMat) <- colnames(clusterTable2)
        allRowNames <- as.character(sort(unique(clusterVector)))
        row.names(zeroMat) <- allRowNames[-which(allRowNames %in%
            row.names(clusterTable2))]
        # Here, rows are added to the cluster
        # table to make the number of rows the
        # same as the unique values of the
        # cluster vector.
        clusterTable2big <- rbind(clusterTable2, zeroMat)

        # The rows of the table are re-sorted
        clusterTable2bigResorted <-
            clusterTable2big[order(as.numeric(row.names(clusterTable2big))), ]
        clusterTable2 <- clusterTable2bigResorted
    }


    countTable1 <- table(idsVectorGroup1)
    countTable2 <- table(idsVectorGroup2)

    clusterFractionsForAllIds1 <- clusterTable1
    clusterFractionsForAllIds2 <- clusterTable2


    for (i in seq_len(length(countTable1))) {
        x <- clusterTable1[, i] / countTable1[i]
        clusterFractionsForAllIds1[, i] <- x
    }

    for (i in seq_len(length(countTable2))) {
        x <- clusterTable2[, i] / countTable2[i]
        clusterFractionsForAllIds2[, i] <- x
    }

    if (missing(pairingVector) == FALSE) {
        # Here, a comparable pairing vector pair
        # is created if a multilevel sPLS-DA
        # should be performed.

        pairingVectorGroup1 <-
            as.character(pairingVector[groupVector == unique(groupVector)[1]])
        pairingVectorGroup2 <-
            as.character(pairingVector[groupVector == unique(groupVector)[2]])

        pairingShortGroup1 <- clusterFractionsForAllIds1[1, ]

        for (i in seq_len(ncol(clusterFractionsForAllIds1))) {
            pairingShortGroup1[i] <-
                pairingVectorGroup1[
                    which(colnames(clusterFractionsForAllIds1)[i]
                    == idsVectorGroup1)[1]
                ]
        }

        pairingShortGroup2 <- clusterFractionsForAllIds2[1, ]

        for (i in seq_len(ncol(clusterFractionsForAllIds2))) {
            pairingShortGroup2[i] <-
                pairingVectorGroup2[
                    which(colnames(clusterFractionsForAllIds2)[i]
                    == idsVectorGroup2)[1]
                ]
        }

        pairingAll <- c(pairingShortGroup1, pairingShortGroup2)
    } else {
        pairingAll <- NULL
    }

    # A group vector is created with the same
    # length as the number of columns in the
    # tables
    groupId <- as.factor(c(
        rep(groupName1, ncol(clusterFractionsForAllIds1)),
        rep(groupName2, ncol(clusterFractionsForAllIds2))
    ))

    # These two tables are combined to one
    clusterFractionsForAllIds <- as.matrix(cbind(
        clusterFractionsForAllIds1,
        clusterFractionsForAllIds2
    ))

    # Here, the number of possible clusters
    # to be saved in the sPLS-DA is chosen.
    # The number of tested clusters can be up
    # to five, but if the number of clusters
    # is low, the lowest tested variant will
    # be 1 and that will be tested only once.
    testKeepAlternatives <- vector()
    for (i in seq_len(5)) {
        if (i == 1) {
            testKeepAlternatives[i] <- nrow(clusterFractionsForAllIds)
        } else {
            if (testKeepAlternatives[i - 1] > 1) {
                testKeepAlternatives[i] <- 
                    round(testKeepAlternatives[i - 1] / 2)
            } else {
                break
            }
        }
    }

    return(list(
        clusterFractionsForAllIds, groupId, testKeepAlternatives,
        pairingAll
    ))
}

Try the DepecheR package in your browser

Any scripts or data that you put into this service are public.

DepecheR documentation built on Nov. 8, 2020, 5:44 p.m.