Nothing
#' #' This method is a wrapper to plots from a \code{MSnSet} object a
#' #' histogram which represents the distribution of the
#' #' number of missing values (NA) per lines (ie proteins).
#' #'
#' #' @title Histogram of missing values per lines from an object
#' #' \code{MSnSet}
#' #'
#' #' @param obj An object of class \code{MSnSet}.
#' #'
#' #' @param indLegend The indice of the column name's in \code{pData()} tab .
#' #'
#' #' @param showValues A logical that indicates wether numeric values should be
#' #' drawn above the bars.
#' #'
#' #' @return A histogram
#' #'
#' #' @author Alexia Dorffer
#' #'
#' #' @examples
#' #' utils::data(Exp1_R25_pept, package='DAPARdata')
#' #' wrapper.mvPerLinesHisto(Exp1_R25_pept)
#' #'
#' #' @export
#' #'
#' #' @importFrom Biobase pData exprs fData
#' #'
#' wrapper.mvPerLinesHisto <- function(obj, indLegend="auto", showValues=FALSE){
#' qData <- Biobase::exprs(obj)
#' samplesData <- Biobase::pData(obj)
#' mvPerLinesHisto(qData, samplesData, indLegend, showValues)
#' }
#' This method is a wrapper to plots from a \code{MSnSet} object a
#' histogram which represents the distribution of the
#' number of missing values (NA) per lines (ie proteins).
#'
#' @title Histogram of missing values per lines from an object using highcharter
#' \code{MSnSet}
#'
#' @param obj An object of class \code{MSnSet}.
#'
#' @param indLegend The indice of the column name's in \code{pData()} tab .
#'
#' @param showValues A logical that indicates wether numeric values should be
#' drawn above the bars.
#'
#' @return A histogram
#'
#' @author Alexia Dorffer
#'
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' wrapper.mvPerLinesHisto_HC(Exp1_R25_pept)
#'
#' @export
#'
#' @importFrom Biobase pData exprs fData
#'
wrapper.mvPerLinesHisto_HC <- function(obj, indLegend="auto", showValues=FALSE){
if (is.null(obj)){
warning("The dataset in NULL. Cannot continue.")
return(NULL)
}
qData <- Biobase::exprs(obj)
samplesData <- Biobase::pData(obj)
hc <- mvPerLinesHisto_HC(qData, samplesData, indLegend, showValues)
return(hc)
}
#' This method plots a bar plot which represents the distribution of the
#' number of missing values (NA) per lines (ie proteins).
#'
#' @title Bar plot of missing values per lines using highcharter
#' @param qData A dataframe that contains the data to plot.
#' @param samplesData A dataframe which contains informations about
#' the replicates.
#' @param indLegend The indice of the column name's in \code{pData()} tab
#' @param showValues A logical that indicates wether numeric values should be
#' drawn above the bars.
#' @return A bar plot
#' @author Florence Combes, Samuel Wieczorek
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' qData <- Biobase::exprs(Exp1_R25_pept)
#' samplesData <- Biobase::pData(Exp1_R25_pept)
#' mvPerLinesHisto_HC(qData, samplesData)
#'
#' @export
#'
mvPerLinesHisto_HC <- function(qData, samplesData, indLegend="auto", showValues=FALSE){
if (identical(indLegend,"auto")) { indLegend <- c(2:length(colnames(samplesData)))}
for (j in 1:length(colnames(qData))){
noms <- NULL
for (i in 1:length(indLegend)){
noms <- paste(noms, samplesData[j,indLegend[i]], sep=" ")
}
colnames(qData)[j] <- noms
}
coeffMax <- .1
NbNAPerCol <- colSums(is.na(qData))
NbNAPerRow <- rowSums(is.na(qData))
#par(mar = c(10,3, 3, 3))
nb.col <- dim(qData)[2]
nb.na <- NbNAPerRow
temp <- table(NbNAPerRow)
nb.na2barplot <- c(temp, rep(0,1+ncol(qData)-length(temp)))
if (sum(NbNAPerRow) == 0){
nb.na2barplot <- rep(0,1+ncol(qData))
}
df <- data.frame(y=nb.na2barplot[-1])
myColors = rep("lightgrey",nrow(df))
myColors[nrow(df)] <- "red"
#df1 <- df2 <- df
#df2[1:(nrow(df)-1),] <- 0
#df1 [nrow(df),] <- 0
#, series = list( pointWidth = 50)
h1 <- highchart() %>%
hc_title(text = "#[lines] with X NA values") %>%
hc_add_series(data = df, type="column", colorByPoint = TRUE) %>%
hc_colors(myColors) %>%
hc_plotOptions( column = list(stacking = "normal"),
animation=list(duration = 100)) %>%
hc_legend(enabled = FALSE) %>%
hc_xAxis(categories = row.names(df), title = list(text = "#[NA values] per line")) %>%
my_hc_ExportMenu(filename = "missingValuesPlot1") %>%
hc_tooltip(enabled = TRUE,
headerFormat= '',
pointFormat = "{point.y} ")
return(h1)
}
#' This method is a wrapper to plots (using highcharts) from a \code{MSnSet} object a
#' bar plot which represents the distribution of the
#' number of missing values (NA) per lines (ie proteins) and per conditions.
#'
#' @title Bar plot of missing values per lines and per conditions from an
#' object \code{MSnSet}
#'
#' @param obj An object of class \code{MSnSet}.
#'
#' @param ... xxx
#'
#' @return A bar plot
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' wrapper.mvPerLinesHistoPerCondition_HC(Exp1_R25_pept)
#'
#' @export
#'
#' @importFrom Biobase pData exprs fData
#'
wrapper.mvPerLinesHistoPerCondition_HC <- function(obj, ...){
if (is.null(obj)){
warning("The dataset in NULL. Cannot continue.")
return(NULL)
}
qData <- Biobase::exprs(obj)
samplesData <- Biobase::pData(obj)
mvPerLinesHistoPerCondition_HC(qData, samplesData, ...)
}
#' This method plots a bar plot which represents the distribution of the
#' number of missing values (NA) per lines (ie proteins) and per conditions.
#'
#' @title Bar plot of missing values per lines and per condition
#'
#' @param qData A dataframe that contains quantitative data.
#'
#' @param samplesData A dataframe where lines correspond to samples and
#' columns to the meta-data for those samples.
#'
#' @param indLegend The indice of the column name's in \code{pData()} tab
#'
#' @param showValues A logical that indicates wether numeric values should be
#' drawn above the bars.
#'
#' @param palette xxx
#'
#' @return A bar plot
#'
#' @author Samuel Wieczorek
#'
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' qData <- Biobase::exprs(Exp1_R25_pept)
#' samplesData <- Biobase::pData(Exp1_R25_pept)
#' mvPerLinesHistoPerCondition_HC(qData, samplesData, palette=(c('#AAAAAA', '#AAAAAA')))
#'
#' @export
#'
mvPerLinesHistoPerCondition_HC <- function(qData,
samplesData,
indLegend="auto",
showValues=FALSE,
palette=NULL){
conds <- samplesData[,"Condition"]
palette <- BuildPalette(conds, palette)
if (identical(indLegend,"auto")) { indLegend <- c(2:length(colnames(samplesData)))}
nbConditions <- length(unique(samplesData[,"Condition"]))
ncolMatrix <- max(unlist(lapply(unique(samplesData[,"Condition"]), function(x){length(which(samplesData[,"Condition"]==x))})))
m <- matrix(rep(0, nbConditions*(1+ncolMatrix)),
ncol = nbConditions,
dimnames=list(seq(0:(ncolMatrix)),unique(samplesData[,"Condition"])))
for (i in unique(samplesData[,"Condition"]))
{
nSample <- length(which(samplesData[,"Condition"] == i))
t <- NULL
if (nSample == 1) {
t <- table(as.integer(is.na(qData[,which(samplesData[,"Condition"] == i)])))
} else {t <- table(rowSums(is.na(qData[,which(samplesData[,"Condition"] == i)])))}
m[as.integer(names(t))+1,i] <- t
}
m <- as.data.frame(m)
rownames(m) <- 0:(nrow(m)-1)
h1 <- highchart() %>%
hc_title(text = "#[lines] with X NA values (condition-wise)") %>%
my_hc_chart(chartType = "column") %>%
hc_plotOptions( column = list(stacking = ""),
dataLabels = list(enabled = FALSE),
animation=list(duration = 100)) %>%
hc_colors(unique(palette)) %>%
hc_legend(enabled = FALSE) %>%
hc_xAxis(categories = row.names(m), title = list(text = "#[NA values] per line (condition-wise)")) %>%
my_hc_ExportMenu(filename = "missingValuesPlot_2") %>%
hc_tooltip(headerFormat= '',
pointFormat = "{point.y} ")
for (i in 1:nbConditions){
h1 <- h1 %>% hc_add_series(data=m[,unique(samplesData[,"Condition"])[i]]) }
return(h1)
}
#' This method plots from a \code{MSnSet} object a histogram of
#' missing values.
#'
#' @title Histogram of missing values from a \code{MSnSet} object
#' @param obj An object of class \code{MSnSet}.
#' @param indLegend The indices of the column name's in \code{pData()} tab.
#' @param showValues A logical that indicates wether numeric values should be
#' drawn above the bars.
#' @param ... xxx
#' @return A histogram
#' @author Alexia Dorffer
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' wrapper.mvHisto_HC(Exp1_R25_pept, showValues=TRUE)
#'
#' @export
#'
#' @importFrom Biobase pData exprs fData
#'
wrapper.mvHisto_HC <- function(obj, indLegend="auto", showValues=FALSE, ...){
if (is.null(obj)){
warning("The dataset in NULL. Cannot continue.")
return(NULL)
}
qData <- Biobase::exprs(obj)
samplesData <- Biobase::pData(obj)
conds <- samplesData[,"Condition"]
mvHisto_HC(qData, samplesData, conds, indLegend, showValues, ...)
}
#' This method plots a histogram of missing values. Same as the function \code{mvHisto}
#' but uses the package \code{highcharter}
#'
#' @title Histogram of missing values
#' @param qData A dataframe that contains quantitative data.
#' @param samplesData A dataframe where lines correspond to samples and
#' columns to the meta-data for those samples.
#' @param conds A vector of the conditions (one condition per sample).
#' @param indLegend The indices of the column name's in \code{pData()} tab
#' @param showValues A logical that indicates wether numeric values should be
#' drawn above the bars.
#' @param base_palette xxx
#' @return A histogram
#' @author Florence Combes, Samuel Wieczorek
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' qData <- Biobase::exprs(Exp1_R25_pept)
#' samplesData <- Biobase::pData(Exp1_R25_pept)
#' conds <- Biobase::pData(Exp1_R25_pept)[,"Condition"]
#' mvHisto_HC(qData, samplesData, conds, indLegend="auto", showValues=TRUE)
#'
#' @export
#'
mvHisto_HC <- function(qData,
samplesData,
conds,
indLegend="auto",
showValues=FALSE,
base_palette = NULL){
palette <- BuildPalette(conds, base_palette)
print(palette)
if (identical(indLegend,"auto")) {
indLegend <- c(2:length(colnames(samplesData)))
}
NbNAPerCol <- colSums(is.na(qData))
NbNAPerRow <- rowSums(is.na(qData))
df <- data.frame(NbNAPerCol)
names(df) <- 'y'
h1 <- highchart() %>%
my_hc_chart(chartType = "column") %>%
hc_title(text = "#NA by replicate") %>%
hc_add_series(df,type="column", colorByPoint = TRUE) %>%
hc_colors(palette) %>%
hc_plotOptions( column = list(stacking = "normal"),
animation=list(duration = 100)) %>%
hc_legend(enabled = FALSE) %>%
hc_xAxis(categories = conds, title = list(text = "Replicates")) %>%
my_hc_ExportMenu(filename = "missingValuesPlot_3") %>%
hc_tooltip(headerFormat= '',
pointFormat = "{point.y}")
return(h1)
}
#' Plots a heatmap of the quantitative data. Each column represent one of
#' the conditions in the object of class \code{MSnSet} and
#' the color is proportional to the mean of intensity for each line of
#' the dataset.
#' The lines have been sorted in order to vizualize easily the different
#' number of missing values. A white square is plotted for missing values.
#'
#' @title Heatmap of missing values from a \code{MSnSet} object
#' @param obj An object of class \code{MSnSet}.
#' @return A heatmap
#' @author Alexia Dorffer
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' obj <- Exp1_R25_pept
#' keepThat <- mvFilterGetIndices(obj, condition='WholeMatrix', threshold=1)
#' obj <- mvFilterFromIndices(obj, keepThat)
#' wrapper.mvImage(obj)
#'
#' @importFrom Biobase exprs pData fData
#'
#'
#' @export
#'
#' @importFrom Biobase pData exprs fData
#'
wrapper.mvImage <- function(obj){
qData <- Biobase::exprs(obj)
conds <- Biobase::pData(obj)[,"Condition"]
originValues <- Biobase::fData(obj)[,obj@experimentData@other$OriginOfValues]
indices <- which(apply(is.OfType(originValues, "MEC"),1,sum) >0)
if (length(indices)==0){
warning("The dataset contains no Missing value on Entire Condition. So this plot is not available.")
return(NULL)
}else if (length(indices)==1){
warning("The dataset contains only one Missing value on Entire Condition. Currently, Prostar does not handle such dataset to build the plot.
As it has no side-effects on the results, you can continue your imputation.")
return(NULL)
}
mvImage(qData[indices,], conds)
}
#' Plots a heatmap of the quantitative data. Each column represent one of
#' the conditions in the object of class \code{MSnSet} and
#' the color is proportional to the mean of intensity for each line of
#' the dataset.
#' The lines have been sorted in order to vizualize easily the different
#' number of missing values. A white square is plotted for missing values.
#'
#' @title Heatmap of missing values
#' @param qData A dataframe that contains quantitative data.
#' @param conds A vector of the conditions (one condition per sample).
#' @return A heatmap
#' @author Samuel Wieczorek, Thomas Burger
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' qData <- Biobase::exprs(Exp1_R25_pept)
#' conds <- Biobase::pData(Exp1_R25_pept)[,"Condition"]
#' mvImage(qData, conds)
#'
#' @export
#'
#' @importFrom stats setNames
#'
mvImage <- function(qData, conds){
### build indices of conditions
indCond <- list()
ConditionNames <- unique(conds)
for (i in ConditionNames) {
indCond <- append(indCond, list(which(i == conds)))
}
indCond <- setNames(indCond, as.list(c("cond1", "cond2")))
nNA1 = apply(as.matrix(qData[,indCond$cond1]), 1, function(x) sum(is.na(x)))
nNA2 = apply(as.matrix(qData[,indCond$cond2]), 1, function(x) sum(is.na(x)))
o <- order(((nNA1 +1)^2) / (nNA2 +1))
exprso <- qData[o,]
for (i in 1:nrow(exprso)){
k <- order(exprso[i,indCond$cond1])
exprso[i,rev(indCond$cond1)] <- exprso[i, k]
.temp <- mean(exprso[i,rev(indCond$cond1)], na.rm = TRUE)
exprso[i,which(!is.na(exprso[i,indCond$cond1]))] <- .temp
k <- order(exprso[i,indCond$cond2])
exprso[i,indCond$cond2] <- exprso[i, k+length(indCond$cond1)]
.temp <- mean(exprso[i,indCond$cond2], na.rm = TRUE)
exprso[i,length(indCond$cond1) +
which(!is.na(exprso[i,indCond$cond2]))] <- .temp
}
heatmap.DAPAR(exprso,
col = colorRampPalette(c("yellow", "red"))(100),
key=TRUE,
srtCol= 0,
labCol=conds,
ylab = "Peptides / proteins",
main = "MEC heatmap"
)
#heatmap_HC(exprso,col = colfunc(100),labCol=conds)
}
#' This method is a wrapper for the function \code{\link{hc_mvTypePlot2}} adapted to objects
#' of class \code{MSnSet}).
#' @title Distribution of observed values with respect to intensity values
#' from a \code{MSnSet} object
#' @param obj An object of class \code{MSnSet}.
#' @param ... See \code{\link{hc_mvTypePlot2}}
#' @return A scatter plot
#' @author Florence Combes, Samuel Wieczorek
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' wrapper.hc_mvTypePlot2(Exp1_R25_pept)
#'
#' @export
#'
#' @importFrom Biobase pData exprs fData
#'
wrapper.hc_mvTypePlot2 <- function(obj,...){
qData <- Biobase::exprs(obj)
conds <- Biobase::pData(obj)[,"Condition"]
hc_mvTypePlot2(qData, conds = conds,...)
}
#' This method shows density plots which represents the repartition of
#' Partial Observed Values for each replicate in the dataset.
#' The colors correspond to the different conditions (slot Condition in in the
#' dataset of class \code{MSnSet}).
#' The x-axis represent the mean of intensity for one condition and one
#' entity in the dataset (i. e. a protein)
#' whereas the y-axis count the number of observed values for this entity
#' and the considered condition.
#'
#' @title Distribution of Observed values with respect to intensity values
#' @param qData A dataframe that contains quantitative data.
#' @param conds A vector of the conditions (one condition per sample).
#' @param palette The different colors for conditions
#' @param typeofMV xxx
#' @param title The title of the plot
#' @return Density plots
#' @author Samuel Wieczorek
#' @examples
#' utils::data(Exp1_R25_pept, package='DAPARdata')
#' qData <- Biobase::exprs(Exp1_R25_pept)
#' conds <- Biobase::pData(Exp1_R25_pept)[,"Condition"]
#' hc_mvTypePlot2(qData, conds, title="POV distribution")
#'
#' @export
#'
hc_mvTypePlot2 <- function(qData, conds, palette = NULL, typeofMV=NULL, title=NULL){
if (is.null(conds)){return(NULL)}
if (is.null(palette)){
palette <- grDevices::colorRampPalette(brewer.pal(8, "Dark2"))(length(unique(conds)))
}else{
if (length(palette) != length(unique(conds))){
warning("The color palette has not the same dimension as the number of conditions. Set to default palette.")
palette <- grDevices::colorRampPalette(brewer.pal(8, "Dark2"))(length(unique(conds)))
#return(NULL)
}
}
conditions <- conds
mTemp <- nbNA <- nbValues <- matrix(rep(0,nrow(qData)*length(unique(conditions))), nrow=nrow(qData),
dimnames=list(NULL,unique(conditions)))
dataCond <- data.frame()
ymax <- 0
series <- list()
myColors <- NULL
j <- 1
for (iCond in unique(conditions)){
if (length(which(conditions==iCond)) == 1){
mTemp[,iCond] <- qData[,which(conditions==iCond)]
nbNA[,iCond] <- as.integer(is.OfType(qData[,which(conditions==iCond)]))
nbValues[,iCond] <- length(which(conditions==iCond)) - nbNA[,iCond]
} else {
mTemp[,iCond] <- apply(qData[,which(conditions==iCond)], 1, mean, na.rm=TRUE)
nbNA[,iCond] <- apply(qData[,which(conditions==iCond)],1,function(x) length(which(is.na(x) == TRUE)))
nbValues[,iCond] <- length(which(conditions==iCond)) - nbNA[,iCond]
}
for (i in 1:length(which(conditions==iCond))){
data <- mTemp[which(nbValues[, iCond] == i), iCond]
tmp <- NULL
if (length(data) >= 2)
{
tmp <- density(mTemp[which(nbValues[,iCond]==i),iCond])
tmp$y <- tmp$y + i
if (max(tmp$y) > ymax) { ymax <- max(tmp$y)}
}
series[[j]] <- tmp
myColors <- c(myColors, palette[which(unique(conditions)==iCond)])
j <- j+1
}
}
hc <- highchart() %>%
hc_title(text = title) %>%
my_hc_chart(chartType = "spline", zoomType="xy") %>%
hc_legend(align = "left", verticalAlign = "top",
layout = "vertical") %>%
hc_xAxis(title = list(text = "Mean of intensities")) %>%
hc_yAxis(title = list(text = "Number of quantity values per condition"),
#categories = c(-1:3)
#min = 1,
# max = ymax,
tickInterval= 0.5
) %>%
# hc_colors(palette) %>%
hc_tooltip(headerFormat= '',
pointFormat = "<b> {series.name} </b>: {point.y} ",
valueDecimals = 2) %>%
my_hc_ExportMenu(filename = "POV_distribution") %>%
hc_plotOptions(
series=list(
showInLegend = TRUE,
animation=list(
duration = 100
),
connectNulls= TRUE,
marker=list(
enabled = FALSE)
)
)
for (i in 1:length(series)){
hc <- hc_add_series(hc,
data = list_parse(data.frame(cbind(x = series[[i]]$x,
y = series[[i]]$y))),
showInLegend=FALSE,
color = myColors[i],
name=conds[i])
}
# add three empty series for the legend entries. Change color and marker symbol
for (c in 1:length(unique(conds))){
hc <- hc_add_series(hc,data = data.frame(),
name = unique(conds)[c],
color = palette[c],
marker = list(symbol = "circle"),
type = "line")
}
hc
return(hc)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.