Nothing
## ----echo=FALSE, warning=FALSE, message=FALSE---------------------------------
devtools::load_all('.')
## ----warning=FALSE, message=FALSE---------------------------------------------
library('yeastExpData')
## ----echo=TRUE----------------------------------------------------------------
data(ccyclered)
head(ccyclered)
## -----------------------------------------------------------------------------
clusters <- ccyclered$Cluster
### convert from Gene names to the new standard of Saccharomyces Genome Database (SGD) gene ids
ccyclered$SGDID <- sub('^S','S00',ccyclered$SGDID)
names(clusters) <- ccyclered$SGDID
str(clusters)
## ---- fig.show='hold', echo=TRUE----------------------------------------------
data(Yeast.GO.assocs);
str(Yeast.GO.assocs);
head(Yeast.GO.assocs);
validate_association(Yeast.GO.assocs)
## ---- eval=FALSE, echo=TRUE---------------------------------------------------
# library(biomaRt)
# rn <- useDataset("rnorvegicus_gene_ensembl", mart=useMart("ensembl"))
# rgd.symbol=c("As3mt", "Borcs7", "Cyp17a1", "Wbp1l", "Sfxn2", "Arl3") ### exemplify for a limited set of genes
# entity.attr <- getBM(attributes=c('rgd_symbol','go_id'), filters='rgd_symbol', values=rgd.symbol, mart=rn)
## ---- fig.width=6, fig.height=4-----------------------------------------------
entities_attribute_stats(Yeast.GO.assocs) ### shows number of entities per attribute distribution
Yeast.GO.assocs.cons1 <- consolidate_entity_attribute(
entity.attribute = Yeast.GO.assocs
, min.entities.per.attr =3 ### keep only attributes associated to 3 or more entities
, mut.inf=FALSE
)
dim(Yeast.GO.assocs)
dim(Yeast.GO.assocs.cons1) ### shows reduction in the number of associations
## ---- fig.width=6, fig.height=4-----------------------------------------------
data(mi.GO.Yeast)
Yeast.GO.assocs.cons <- consolidate_entity_attribute(
entity.attribute = Yeast.GO.assocs
, min.entities.per.attr =3
, mut.inf=mi.GO.Yeast ### use precalculated mutual information
, U.limit = c(0.1, 0.001) ### calculate consolidated association for these uncertainty levels
) ### shows distribution of the number of pairs of attributes by Uncertainty
str(Yeast.GO.assocs.cons)
## -----------------------------------------------------------------------------
data(Yeast.GO.assocs)
### because it takes time, we use a small sampled subset of associations
entity.attribute.sampled <- Yeast.GO.assocs[sample(1:nrow(Yeast.GO.assocs),100),]
mi.GO.Yeast.sampled <- attribute_mut_inf(
entity.attribute = entity.attribute.sampled
, show.progress = FALSE ## for this small example do not print progress
)
str(mi.GO.Yeast.sampled)
## ---- fig.width=6, fig.height=4-----------------------------------------------
mi.by.swaps<-clusterJudge(
clusters = clusters
, entity.attribute=Yeast.GO.assocs.cons[["0.001"]]
, plot.notes='Yeast clusters judged at uncertainty level 0.001 - Ref: Tavazoie S,& all
`Systematic determination of genetic network architecture. Nat Genet. 1999`'
, plot.saveRDS.file= 'cj.rds') ### save the plot for later use
p <- readRDS('cj.rds') ### retrieve the previous plot
pdf('cj.pdf'); plot(p); dev.off() ### plot on another device
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.