Nothing
dPhidPcp <-
function(Xj,Rj,Qu,Pj,cp,doDebug=FALSE){
## will compute partial derivative of Phi with respect to P_{c',j}.
## -Pj is the j'th column of P with length C.
## -Muc is the c'th column of Mu.
## -cp: c', the index for Z_{i,c'}. See supplement.pdf.
C <- length(Pj)
derivative <- 0
for( state in 2:(2^C) ){ ## for all possible values of a row of Z, expect 0s.
zee <- decimal2binary(state,C) ## binary representation of state-1
if(zee[cp]==0)
next ## 0*x=0
piBinom <- (zee/2)%*%Pj ## /2 because of heterozygosity,
## Note: maybe derivative is twice more or less, but in the same direction.
piBinom[piBinom>1] <- 1
XOverpiFraction <- Xj/piBinom
RXOverpiFraction <- (Rj-Xj)/(1-piBinom)
fraction <- XOverpiFraction-RXOverpiFraction
derivBinom <- Qu[,state]*fraction
summand <- sum(derivBinom) ## sum over i
##
if(!is.nan(summand))
derivative <- derivative + 1*summand ## zee[cp]=1
if(doDebug)
browser()
}
derivative <- derivative /2 ## /2 because of heterozygosity
result <- derivative
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.