Nothing
setGeneric("NSCpredictInterface", function(trained, test, ...)
{standardGeneric("NSCpredictInterface")})
setMethod("NSCpredictInterface", c("pamrtrained", "matrix"), function(trained, test, ...)
{
NSCpredictInterface(trained, DataFrame(t(test), check.names = FALSE), ...)
})
setMethod("NSCpredictInterface", c("pamrtrained", "DataFrame"), function(trained, test, classes = NULL, ..., returnType = c("class", "score", "both"), verbose = 3)
{
if(!requireNamespace("pamr", quietly = TRUE))
stop("The package 'pamr' could not be found. Please install it.")
returnType <- match.arg(returnType)
if(!is.null(classes)) # Remove them.
{
splitDataset <- .splitDataAndClasses(test, classes) # Remove classes, if present.
test <- splitDataset[["measurements"]]
}
minError <- min(trained[["errors"]])
threshold <- trained[["threshold"]][max(which(trained[["errors"]] == minError))]
test <- t(as.matrix(test))
classPredictions <- pamr::pamr.predict(trained, test, threshold, ...)
classScores <- pamr::pamr.predict(trained, test, threshold, type = "posterior", ...)[, levels(trained[["y"]])]
if(!is.matrix(classScores)) # Only one sample was predicted and pamr isn't consistent with return types.
classScores <- t(classScores)
if(verbose == 3)
message("Nearest shrunken centroid predictions made.")
switch(returnType, class = classPredictions, # Factor vector.
score = classScores, # Numeric matrix.
both = data.frame(class = classPredictions, classScores))
})
setMethod("NSCpredictInterface", c("pamrtrained", "MultiAssayExperiment"), function(trained, test, targets = names(test), ...)
{
test <- .MAEtoWideTable(test, targets)[["dataTable"]] # Remove any classes, if present.
if(ncol(test) == 0)
stop("No variables in data tables specified by \'targets\' are numeric.")
else
NSCpredictInterface(trained, test, ...)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.