Nothing
setGeneric("DLDAtrainInterface", function(measurements, ...)
{standardGeneric("DLDAtrainInterface")})
setMethod("DLDAtrainInterface", "matrix", # Matrix of numeric measurements.
function(measurements, classes, ...)
{
DLDAtrainInterface(DataFrame(t(measurements), check.names = FALSE), classes, ...)
})
setMethod("DLDAtrainInterface", "DataFrame", function(measurements, classes, verbose = 3)
{
splitDataset <- .splitDataAndClasses(measurements, classes)
trainingMatrix <- as.matrix(splitDataset[["measurements"]])
isNumeric <- sapply(measurements, is.numeric)
measurements <- measurements[, isNumeric, drop = FALSE]
#if(!requireNamespace("sparsediscrim", quietly = TRUE))
#stop("The package 'sparsediscrim' could not be found. Please install it.")
if(verbose == 3)
message("Fitting DLDA classifier to data.")
# sparsediscrim::dlda(as.matrix(measurements), classes)
.dlda(as.matrix(measurements), classes)
})
setMethod("DLDAtrainInterface", "MultiAssayExperiment",
function(measurements, targets = names(measurements), ...)
{
tablesAndClasses <- .MAEtoWideTable(measurements, targets)
measurements <- tablesAndClasses[["dataTable"]]
classes <- tablesAndClasses[["classes"]]
if(ncol(measurements) == 0)
stop("No variables in data tables specified by \'targets\' are numeric.")
else
DLDAtrainInterface(measurements, classes, ...)
})
setGeneric("DLDApredictInterface", function(model, test, ...)
{standardGeneric("DLDApredictInterface")})
setMethod("DLDApredictInterface", c("dlda", "matrix"),
function(model, test, ...)
{
DLDApredictInterface(model, DataFrame(t(test), check.names = FALSE), ...)
})
setMethod("DLDApredictInterface", c("dlda", "DataFrame"), function(model, test, returnType = c("class", "score", "both"), verbose = 3)
{
isNumeric <- sapply(test, is.numeric)
test <- test[, isNumeric, drop = FALSE]
returnType <- match.arg(returnType)
#if(!requireNamespace("sparsediscrim", quietly = TRUE))
#stop("The package 'sparsediscrim' could not be found. Please install it.")
if(verbose == 3)
message("Predicting classes using trained DLDA classifier.")
#predict(model, as.matrix(test))
predictions <- .predict(model, as.matrix(test))
switch(returnType, class = predictions[["class"]], # Factor vector.
score = predictions[["posterior"]][, model[["groups"]]], # Numeric matrix.
both = data.frame(class = predictions[["class"]], predictions[["posterior"]][, model[["groups"]]]))
})
setMethod("DLDApredictInterface", c("dlda", "MultiAssayExperiment"),
function(model, test, targets = names(test), ...)
{
tablesAndClasses <- .MAEtoWideTable(test, targets)
test <- tablesAndClasses[["dataTable"]]
if(ncol(test) == 0)
stop("No variables in data tables specified by \'targets\' are numeric.")
else
DLDApredictInterface(model, test, ...)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.