Nothing
countByOverlaps <- function(features, reads, ignore.strand, inter.feature) {
## NOT work for parallel
countOverlaps(features, reads, ignore.strand=ignore.strand)
}
#' Perform overlap queries between reads and genomic features by bins
#'
#' summarizeOverlapsByBins extends
#' \link[GenomicAlignments:summarizeOverlaps-methods]{summarizeOverlaps} by
#' providing fixed window size and step to split each feature into bins and
#' then do queries. It will return counts by signalSummaryFUN, which applied to
#' bins in one feature, for each feature.
#'
#'
#' @param targetRegions A \link[GenomicRanges:GRanges-class]{GRanges} object of
#' genomic regions of interest.
#' @param reads A \link[GenomicRanges:GRanges-class]{GRanges},
#' \link[GenomicRanges:GRangesList-class]{GRangesList}
#' \link[GenomicAlignments:GAlignments-class]{GAlignments},
#' \link[GenomicAlignments:GAlignmentsList-class]{GAlignmentsList},
#' \link[GenomicAlignments:GAlignmentPairs-class]{GAlignmentPairs} or
#' \link[Rsamtools:BamFile-class]{BamFileList} object that represents the data
#' to be counted by
#' \code{\link[GenomicAlignments:summarizeOverlaps-methods]{summarizeOverlaps}}.
#' @param windowSize Size of windows
#' @param step Step of windows
#' @param signalSummaryFUN function, which will be applied to the bins in each
#' feature.
#' @param mode mode can be one of the pre-defined count methods. see
#' \link[GenomicAlignments:summarizeOverlaps-methods]{summarizeOverlaps}.
#' default is countByOverlaps, alia of countOverlaps(features, reads,
#' ignore.strand=ignore.strand)
#' @param ... Additional arguments passed to
#' \code{\link[GenomicAlignments:summarizeOverlaps-methods]{summarizeOverlaps}}.
#' @return A
#' \link[SummarizedExperiment:RangedSummarizedExperiment-class]{RangedSummarizedExperiment}
#' object. The assays slot holds the counts, rowRanges holds the annotation
#' from features.
#' @author Jianhong Ou
#' @keywords misc
#' @export
#' @importFrom GenomicAlignments summarizeOverlaps
#' @importFrom SummarizedExperiment colData SummarizedExperiment
#' @importFrom S4Vectors SimpleList aggregate
#' @examples
#'
#' fls <- list.files(system.file("extdata", package="GenomicAlignments"),
#' recursive=TRUE, pattern="*bam$", full=TRUE)
#' names(fls) <- basename(fls)
#' genes <- GRanges(
#' seqnames = c(rep("chr2L", 4), rep("chr2R", 5), rep("chr3L", 2)),
#' ranges = IRanges(c(1000, 3000, 4000, 7000, 2000, 3000, 3600,
#' 4000, 7500, 5000, 5400),
#' width=c(rep(500, 3), 600, 900, 500, 300, 900,
#' 300, 500, 500),
#' names=letters[1:11]))
#' se <- summarizeOverlapsByBins(genes, fls, windowSize=50, step=10)
#'
summarizeOverlapsByBins <- function(targetRegions, reads,
windowSize=50, step=10,
signalSummaryFUN=max,
mode=countByOverlaps, ...){
stopifnot(is(targetRegions, "GRanges"))
stopifnot(is.function(signalSummaryFUN))
stopifnot(length(reads)>1)
if(length(names(targetRegions))==0 ||
any(duplicated(names(targetRegions)))){
stop("duplicated or null targetRegions names.")
}
checkFun <- signalSummaryFUN(1:10)
if(length(checkFun)!=1){
stop("the output of signalSummaryFUN must be a vector with length 1")
}
if(!inherits(checkFun, c("numeric", "integer"))){
stop("the output of signalSummaryFUN must be a numeric.")
}
## change the targetRegions by windowSize, step
# if(any(width(targetRegions)<windowSize) | any(width(targetRegions)<step)){
# warning("Some of targetRegions are smaller than windowSize or step.",
# "They will be removed.")
# }
# targetRegions <- targetRegions[width(targetRegions)>=windowSize]
# targetRegions <- targetRegions[width(targetRegions)>=step]
# tileTargetRanges <- tile(x=ranges(targetRegions), width=step)
# nt <- elementNROWS(tileTargetRanges)
# tileTargetRanges.end <- rep(end(targetRegions), nt)
# tileTargetRanges <- unlist(tileTargetRanges)
# width(tileTargetRanges) <- windowSize
# tileTargetRegions <- GRanges(rep(seqnames(targetRegions), nt),
# tileTargetRanges,
# rep(strand(targetRegions), nt),
# oid=rep(1:length(targetRegions), nt))
# tileTargetRegions <- tileTargetRegions[end(tileTargetRanges) <=
# tileTargetRanges.end]
tileTargetRegions <- tileGRanges(targetRegions, windowSize,
step, keepPartialWindow=FALSE)
se <- summarizeOverlaps(features=tileTargetRegions, reads=reads,
mode=mode, ...)
cnts <- aggregate(x=assay(se),
by=list(oid_USED_BY_SE_OU=tileTargetRegions$oid),
FUN=signalSummaryFUN, drop=FALSE)
se.rowRanges <- targetRegions[cnts$oid_USED_BY_SE_OU]
rownames(cnts) <- names(se.rowRanges)
cnts$oid_USED_BY_SE_OU <- NULL
cnts <- as.matrix(cnts)
SummarizedExperiment(assays=SimpleList(counts=cnts),
rowRanges=se.rowRanges,
colData=colData(se))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.