R/plotOptimalHeatMapDev.R

Defines functions plotOptimalHeatMaps

Documented in plotOptimalHeatMaps

plotOptimalHeatMaps<-function(optimalParam,contour=TRUE,col=NULL,main=NULL,layout=TRUE,overlay=FALSE){


    ## parsng data depending on what is being parser
    ## Dont know if i should just pars this to a genomic profile object or not.
    ## I feel that in this case it will be to redundant.
    ##

    if(all(names(optimalParam) %in% c("Optimal","Occupancy","ChIPProfiles","goodnessOfFit"))){
       optimalParam<-optimalParam[[1]][[2]]
    } else if(all(names(optimalParam) %in% c("OptimalParameters","OptimalMatrix","method"))){
       optimalParam<-optimalParam[[2]]
    } else if(class(optimalParam)=="list"){
       optimalParam<-optimalParam

    } else if(class(optimalParam)=="matrix"){
      optimalParam<-list(optimalParam)
    } else{
      stop("Oops Sonthing went wrong. Please enusre that you are parsing the right object.
      We are not sure what what to do now. ")

    }

    ## replacing NA or NAN by 0 because it messes things up for the plotting
    ## It be annoying

    nans<-lapply(optimalParam, function(x){return(which(is.na(x), arr.ind=T))})


    ## replacing NaN with min of max val
    namevec<-names(optimalParam)
    for(i in seq_along(optimalParam)){
        if(length(grep(pattern=namevec[i],x=c("MSE","geometric","ks"),ignore.case=TRUE))>0){
            optimalParam[[i]][nans[[i]]]<-max(optimalParam[[i]],na.rm=TRUE)
        }else {
            optimalParam[[i]][nans[[i]]]<-min(optimalParam[[i]],na.rm=TRUE)
        }
    }
    ## generting overlay
    if(overlay){
        if(!is.list(optimalParam)){
          stop("plotOptimalHeatMaps cannot overlay one matrix -
          Please Ensure that you have more than one matrix in a list")
        }
        over<-matrix(0,ncol=ncol(optimalParam[[1]]),nrow=nrow(optimalParam[[1]]))
        for(k in seq_along(optimalParam)){

            ## creating match idx vector
            buffer<-optimalParam[[k]]
            idx<-seq_along(as.vector(optimalParam[[k]]))


            # define top hits
            top<-head(idx,floor(length(idx)/10))

            # Top hits
            if(namevec[k] %in% c("geometricMean","MSEMean","ksMean","recallMean")){
                ord<-order(buffer,decreasing=F)
            } else{
                ord<-order(buffer,decreasing=T)
            }

            ##creating a ordered value matrix
            optimalMatrix<-matrix(match(idx,ord),ncol=ncol(optimalParam[[1]]), nrow=nrow(optimalParam[[1]]))

            ## Location of top hits in ordered value matrix
            topHits<-which(optimalMatrix<max(top),arr.ind=T)

            # Creating empty matrix
            mat<- matrix(0,ncol=ncol(optimalParam[[1]]),nrow=nrow(optimalParam[[1]]))

            ## Keep in mind that there are more Similarity methods
            ## This will pull it towards those optimal Parameters
            ## For better results balence it
            ## or only take two Parameters

            ## Overlaying top hits
            mat[topHits]<-1


            ## Adding top hits to matrix
            over<-over+mat

        }

        optimalParam$Overlay<-over
    }

    #Setting up some paramters
    if(class(optimalParam)!="list"){

        if(is.null(main)){
            mainTitle<-"Optimal Paramters"
        } else{
            mainTitle<-main
        }

        ylabs<-as.numeric(rownames(optimalParam))
        xlabs<-as.numeric(colnames(optimalParam))

        ifelse(!is.null(col),cols<-col,cols<-"#00979b")

        optimalParam<-list(optimalParam)
    } else {
        if(is.null(main) & length(main)>0){
            mainTitle<-names(optimalParam)
        } else{
            mainTitle<-names(optimalParam)
            mainTitle[seq_along(main)]<-main
        }
        ylabs<-as.numeric(rownames(optimalParam[[1]]))
        xlabs<-as.numeric(colnames(optimalParam[[1]]))
        ifelse(is.null(col),cols<-rainbow(length(optimalParam),s=0.7),cols<-col)
        if(length(cols)!=length(optimalParam)){
            cols<-rep(cols,ceiling(length(optimalParam)/length(cols)))
        }
    }

    ## plotting
    if(layout){
        layout(matrix(1:2,ncol=2,byrow=T), width = c(6,1),height = c(1,1))
    }

    for(i in seq_along(optimalParam)){
        #if(grepl("MSE",mainTitle[i])|grepl("geometric",mainTitle[i])|grepl("ks", mainTitle[i])){
            #colfunc<-colorRampPalette(c(cols[i],"white"))
        #}else{
            colfunc<-colorRampPalette(c("white",cols[i]))
      #  }

        Colors <- colfunc(20)
        legend_image<-as.raster(matrix(rev(Colors),ncol=1))
        par(mar=c(5.5,5.5,4.5, 0.5)+0.1)
        par(family="mono")

        graphics::image(1:length(xlabs),1:length(ylabs),t(optimalParam[[i]]),
            axes = FALSE, xlab=" ", ylab=" ",col=Colors)

        title(main=mainTitle[i],cex.main=1.8)
        title( ylab="Scaling Factor", line=3.5, cex.lab=1.2)
        title(xlab="Number of Bound Molecules",line=4.5, cex.lab=1.2)
        axis(1,at=seq_along(xlabs),labels=F)
        text(seq_along(xlabs),y =(-0.2), srt = 45, adj = 1,labels = xlabs, xpd = TRUE,cex=1.15)
        axis(LEFT <-2, at=1:length(ylabs), labels=ylabs,las= HORIZONTAL<-1,cex.axis=1.15)
        if(contour){
          contour(1:length(xlabs),1:length(ylabs), t(
          optimalParam[[i]]),nlevels=7, drawlabels=FALSE,
          add = TRUE, col = "black", lwd=1, labcex = 1.0)
        }

        # raster scacle
        par(mar=c(3,0.5,3.2,0.5))
        plot(c(0,2),c(0,1),type = 'n', axes = F,xlab = '', ylab = '')
        text(x=1.6, y =seq(0,1,l=5) , labels = round(seq(min(optimalParam[[i]]),max(optimalParam[[i]]),l=5),2),cex=0.95)
        rasterImage(legend_image, 0, 0, 1,1)
    }
}

Try the ChIPanalyser package in your browser

Any scripts or data that you put into this service are public.

ChIPanalyser documentation built on Nov. 8, 2020, 8:23 p.m.