Nothing
#################################
#CANCER VARIANT EXPLORER V1.1
#WGCNAmelanoma extension
#Server script
#Andreas Mock
#University of Cambridge
#################################
#######################
#PART I: PREFIX########
#######################
#protein-changing categories of SNVs according to a functional effect score below 5,
#suggested by http://gatkforums.broadinstitute.org/gatk/discussion/4220/what-is-the-difference-between-tx-mode-best-effect-vs-canonical
pc_cat <- c("De_novo_Start_OutOfFrame", "Nonsense_Mutation",
"Nonstop_Mutation", "Missense_Mutation",
"De_novo_Start_InFrame","In_Frame_Del","In_Frame_Ins",
"Frame_Shift_Del","Frame_Shift_Ins","Frame_Shift_Sub",
"Start_Codon_SNP","Start_Codon_Del","Start_Codon_Ins",
"Start_Codon_DNP","Start_Codon_TNP","Start_Codon_ONP",
"Stop_Codon_SNP","Stop_Codon_Del","Stop_Codon_Ins",
"Stop_Codon_DNP","Stop_Codon_TNP","Stop_Codon_ONP",
"Splice_Site","Splice_Site_SNP","Splice_Site_Del",
"Splice_Site_Ins","Splice_Site_DNP","Splice_Site_TNP",
"Splice_Site_ONP","Splice_Site","miRNA")
#create list only containing protein changing variants (pcv)
pcv <- vector("list",length(v))
for (i in 1:length(v)){
pcv[[i]] <- v[[i]][v[[i]]$variant_classification %in% pc_cat & !v[[i]]$protein_change=="",]
}
names(pcv) <- names(v)
if(0 %in% sapply(pcv,nrow)){
stop("At least one oncotator input file has no protein-changing variants.")
}
#retreive rankscores (rs) from variant information
#rs_names <- colnames(pcv[[1]])[grep("rankscore",colnames(pcv[[1]]))]
#rs_names <- gsub("dbNSFP_",replacement = "",rs_names)
#rs_names = gsub("_rankscore",replacement = "",rs_names)
rs_names = c("CADD_raw","FATHMM","GERP.._RS","LRT_converted" ,"LR",
"MutationAssessor","MutationTaster_converted","Polyphen2_HDIV",
"Polyphen2_HVAR","RadialSVM","SIFT_converted","SiPhy_29way_logOdds" ,
"phastCons100way_vertebrate","phastCons46way_placental", "phastCons46way_primate",
"phyloP100way_vertebrate","phyloP46way_placental","phyloP46way_primate" )
suppressWarnings(
for(n in 1:length(pcv)){
rs_matrix = matrix(NA,nrow(pcv[[n]]),length(rs_names))
for (i in 1:length(rs_names)){
rs = strsplit(as.vector(pcv[[n]][,grep("rankscore",colnames(v[[1]]))[i]]), "[|]")
rs = as.numeric(sapply(rs,"[", i=1))
rs_matrix[,i] = rs
}
pcv[[n]]$rs_matrix = rs_matrix
pcv[[n]]$sum_is_na = apply(apply(pcv[[n]]$rs_matrix,1,is.na),2,sum)
colnames(pcv[[n]]$rs_matrix) = rs_names
}
)
#define colours for plotting
hmcol <- rev(colorRampPalette(RColorBrewer::brewer.pal(10, "RdBu"))(256))
palette_breaks <- seq(0,1,length.out = 257)
#####################################################
#PART II: OUTPUTS####################################
#####################################################
shinyServer(function(input, output, session) {
####ANNOTATION####
output$nVariants <- renderText({
paste("Total number of variants:", nrow(v[[input$sample]]))
})
output$algorithm_choice <- renderText({
paste(input$algorithm, "cutoff")
})
output$varianttype <- renderPlot({
ggplot2::ggplot(v[[input$sample]], ggplot2::aes(x=variant_type)) +
geom_bar(stat="count") + xlab("") +
theme_bw() + ylab("count")
})
output$variantclass <- renderPlot({
var_col = as.vector(v[[input$sample]]$variant_classification)
var_col[var_col %in% pc_cat] = "protein-changing"
var_col[!var_col =="protein-changing"] = "other"
df = as.data.frame(cbind(v[[input$sample]], var_col))
ggplot2::ggplot(df, ggplot2::aes(x=variant_classification, fill=var_col)) +
geom_bar(stat="count") + coord_flip() +
xlab("") + theme_bw() +
guides(fill=guide_legend(reverse=TRUE)) +
scale_fill_manual(values = c("gold1","blue")) +
labs(fill="Variant classification")
})
output$nCoding_SNVs <- renderText({
paste("Protein changing single-nucleotide variants:",
nrow(pcv[[input$sample]]))
})
#consensus clustering
ConsClustInput <- reactive({
if((length(which(pcv[[input$sample]]$sum_is_na==18))==length(pcv[[input$sample]]$sum_is_na))==FALSE){
ConsClust = vector("list",length(v))
for (n in 1:length(v)){
M_temp = pcv[[n]]$rs_matrix[!sapply(1:nrow(pcv[[n]]$rs_matrix),
function(x) TRUE %in% is.na(pcv[[n]]$rs_matrix)[x,]),]
ConsClust[[n]] = ConsensusClusterPlus::ConsensusClusterPlus(
sweep(M_temp,1,apply(M_temp,1,median,na.rm=T)),maxK=6,reps=input$nperm,
pItem=0.8,pFeature=0.5, clusterAlg="hc",distance="pearson",
seed=1262118388.71279,plot=NULL, verbose=FALSE)
}
names(ConsClust) = names(v)
for(n in 1:length(v)){
for(k in 2:6){
rownames(ConsClust[[n]][[k]]$ml) = rs_names
colnames(ConsClust[[n]][[k]]$ml) = rs_names
}
}
return(ConsClust)
}
})
#combination score of rankscores
CombScoreInput <- reactive({
if((length(which(pcv[[input$sample]]$sum_is_na==18))==length(pcv[[input$sample]]$sum_is_na))==TRUE){
rep(0,nrow(pcv[[input$sample]]))
} else {
ConsClust = ConsClustInput()
df = as.data.frame(t(pcv[[input$sample]]$rs_matrix),stringsAsFactors = FALSE)
centroid = t(ddply(df, .(ConsClust[[input$sample]][[as.numeric(
input$pred_modules)]]$consensusClass), colwise(mean, na.rm = TRUE)))
colnames(centroid) = paste0("module",1:ncol(centroid))
centroid = centroid[2:nrow(centroid),]
centroid = apply(centroid,2,as.numeric)
cutoff = 0.75
comb_score = as.vector(apply(centroid*(centroid>cutoff*1),1,
function(x) sum(x,na.rm=TRUE)))
comb_score
}
})
#update slider according to algorithm
observe({
if(!input$algorithm=="dbNSFP combination score"){
updateSliderInput(session, inputId = "comb_score",
value = 0, min = 0, max=1,step = 0.05)
}else{
x = as.numeric(input$pred_modules)
updateSliderInput(session, inputId = "comb_score",
value = 0, min = 0, max =x,step = 0.1)
}
})
output$ConsHM <- renderPlot({
if((length(which(pcv[[input$sample]]$sum_is_na==18))==length(pcv[[input$sample]]$sum_is_na))==TRUE){
plot.new()
text(0.5,1,"Heatmap cannot be displayed as no variant has dbNSFP annotation",cex=1.3)
} else {
ConsClust = ConsClustInput()
score_col = c("orange","blueviolet","yellow","blueviolet","orange",
rep("blueviolet",4),"orange","blueviolet",rep("yellow",7))
plot.new()
gplots::heatmap.2(ConsClust[[input$sample]][[as.numeric(
input$pred_modules)]]$ml,margins=c(17,17),col=hmcol,
ColSideColors = ConsClust[[input$sample]][[as.numeric(
input$pred_modules)]]$clrs[[1]], RowSideColors = score_col,trace="n",
scale = "n", breaks=palette_breaks,key.xlab="consensus index",
key.title="")
legend("bottomleft",title="category",legend = c(
"conservation","functional prediction","ensemble"),
fill=c("yellow","orange", "blueviolet"),
border =c("yellow", "orange", "blueviolet"),xpd=TRUE, cex=0.9)
legend("topright",legend = paste0("cluster ",1:as.numeric(input$pred_modules)),
fill=ConsClust[[input$sample]][[as.numeric(input$pred_modules)]]$clrs[[3]],
border=ConsClust[[input$sample]][[as.numeric(
input$pred_modules)]]$clrs[[3]], xpd=TRUE, cex=0.9)
}
})
####PRIORITISATION####
output$Centroid <- renderPlot({
if(input$algorithm=="dbNSFP combination score"){
comb_score = CombScoreInput()
} else {
comb_score = rs_matrix[,which(rs_names==input$algorithm)]
comb_score[is.na(comb_score)] = 0
}
cutoff_boolean = comb_score[order(comb_score,decreasing = TRUE)]>(
as.numeric(input$comb_score)-0.000001)
colors = rep("cornflowerblue",length(comb_score))
colors[cutoff_boolean==FALSE] = "brown"
plot(comb_score[order(comb_score,decreasing = TRUE)],
xlab=c("variant (decreasing order)"), ylab="score",
col=colors, main=paste(input$algorithm), pch=20)
abline(h = as.numeric(input$comb_score),lty=2, lwd=2, col="brown")
legend("topright",legend=c("included","excluded"),col=c("cornflowerblue","brown"),pch=20)
})
output$ThousandG <- renderPlot({
ThousandG = as.vector(droplevels(as.factor(pcv[[input$sample]]$X1000Genome_AF)))
ThousandG[ThousandG==""] = NA
if(input$algorithm=="dbNSFP combination score"){
comb_score = CombScoreInput()
} else {
comb_score = rs_matrix[,which(rs_names==input$algorithm)]
comb_score[is.na(comb_score)] = 0
}
cutoff_boolean = comb_score<as.numeric(input$comb_score)
col1 = rep("cornflowerblue", sum(!is.na(ThousandG)))
col1[cutoff_boolean[!is.na(ThousandG)]] = "brown"
if(1 %in% input$db){col1 = rep("brown", sum(!is.na(ThousandG)))}
if(sum(is.na(ThousandG))==length(ThousandG)){
plot.new()
text(0.5,1,"No germline variant",cex=1.3)
} else {
plot(ThousandG[!is.na(ThousandG)][
order(ThousandG[!is.na(ThousandG)],decreasing=TRUE)],xlab=c("variant"),
main=paste0(sum(!is.na(ThousandG))," variants in 1000 Genomes Project"),
col=col1, ylab="AF",pch=19)
legend("topright",legend=c("included","excluded"),
col=c("cornflowerblue","brown"),pch=20)}
})
VarFilterInput <- reactive({
if(input$algorithm=="dbNSFP combination score"){
comb_score = CombScoreInput()
} else {
comb_score = rs_matrix[,which(rs_names==input$algorithm)]
comb_score[is.na(comb_score)] = 0
}
f = (comb_score>=input$comb_score)*1 #keep if higher than comb.score cutoff
f[pcv[[input$sample]][[3]]==18] = 0 #exclude variants with missing rankscores
if (1 %in% input$db){ #if selection 1 - exclude all 1000 Genomes variants
ThousandG = as.vector(droplevels(as.factor(pcv[[input$sample]]$X1000Genome_AF)))
ThousandG[ThousandG==""] = NA
f[ThousandG>0] = 0
}
if (2 %in% input$db){ #keep all overlapping mutations in COSMIC if selected
f[!as.vector((droplevels(as.factor(pcv[[input$sample]]$COSMIC_overlapping_mutation_AAs))))==""] =1
}
if (3 %in% input$db){ #keep all non-SNVs
nonSNVs = pcv[[input$sample]]$variant_type
f[!nonSNVs=="SNP"] =1
}
if (4 %in% input$db){ #keep all DNA repair gene variants
repair = pcv[[input$sample]]$HumanDNARepairGenes_Role
repair[repair==""] = NA
is.repair = !is.na(repair)
f[is.repair] =1
}
sel_genes = unique(pcv[[input$sample]]$gene)
gene_rescue = unlist(strsplit(input$rescue,", "))
gene_rescue_intersect = sel_genes[sel_genes %in% gene_rescue]
f[pcv[[input$sample]]$gene %in% gene_rescue_intersect] =1
f = f==1
f
})
output$COSMIC <- renderPrint({
f = VarFilterInput()
sum(!as.vector((droplevels(as.factor(pcv[[input$sample]]$COSMIC_overlapping_mutation_AAs)[f])))=="")
})
output$DNArepair <- renderTable({
f = VarFilterInput()
repair = pcv[[input$sample]]$HumanDNARepairGenes_Role
repair[repair==""] = NA
is.repair = (((!is.na(repair))*1) *(f*1)) == 1
if(sum(is.repair)>0){
data.frame(gene=pcv[[input$sample]]$gene[is.repair],role=repair[is.repair])
}
})
####TOP TABLE####
output$top = renderText({
f = VarFilterInput()
paste0(sum(f)," variants prioritised for further exploration")
})
output$toptable = renderDataTable({
f = VarFilterInput()
if(input$algorithm=="dbNSFP combination score"){
comb_score = CombScoreInput()
} else {
comb_score = rs_matrix[,which(rs_names==input$algorithm)]
comb_score[is.na(comb_score)] = 0
}
genes = pcv[[input$sample]]$gene[f]
data.frame(gene=genes,
protein_change=pcv[[input$sample]]$protein_change[f],
type=pcv[[input$sample]]$variant_type[f],
classification=pcv[[input$sample]]$variant_classification[f],
score=comb_score[f],
COSMIC_entity = pcv[[input$sample]]$COSMIC_overlapping_primary_sites[f]
)
})
output$downloadTop <- downloadHandler(
filename = function() {
paste('CVE_top_table_', Sys.Date(), '.csv', sep='')
},
content = function(file) {
f = VarFilterInput()
if(input$algorithm=="dbNSFP combination score"){
comb_score = CombScoreInput()
} else {
comb_score = rs_matrix[,which(rs_names==input$algorithm)]
comb_score[is.na(comb_score)] = 0
}
genes = pcv[[input$sample]]$gene[f]
toptable=data.frame(gene=genes,
protein_change=pcv[[input$sample]]$protein_change[f],
type=pcv[[input$sample]]$variant_type[f],
classification=pcv[[input$sample]]$variant_classification[f],
score=comb_score[f],
COSMIC_entity = pcv[[input$sample]]$COSMIC_overlapping_primary_sites[f])
writeLines(paste("#Cancer Variant Explorer top table output |", Sys.Date(),"| sample file:",
names(v),"| number of algorithm clusters:",
input$pred_modules,"| algorithm chosen for prioritisation:",
input$algorithm,
"| algorithm cutoff:",
input$comb_score,"| filters: exclude 1000 Genomes:",
1 %in% input$db, ", include all COSMIC:", 2 %in% input$db,
", include non-SNVs:", 3 %in% input$db, ", include DNA repair genes:",
4 %in% input$db, " | rescued genes:", input$rescue),
file)
write.table(toptable, file,append=TRUE,sep=",")
}
)
output$rescue <- renderPrint({ input$rescue })
output$DGIdb_input = renderPrint({
f = VarFilterInput()
f_which = which(f==1)
paste(as.vector(pcv[[input$sample]]$gene[f_which]),collapse=", ")
})
JSON = reactive({
if(input$DGIdb_anno){
f = VarFilterInput()
f_which = which(f==1)
genes = pcv[[input$sample]]$gene[f_which]
url = paste0("http://dgidb.genome.wustl.edu/api/v1/interactions.json?genes=",
paste(genes, collapse=","),
"&drug_types=antineoplastic&interaction_sources=TEND,MyCancerGenome")
JSON = jsonlite::fromJSON(url)
}
})
output$DGIdb_status = renderPrint({
if(input$DGIdb_anno){
JSON = JSON()
if(class(JSON)=="list"){
cat("annotation retrieved")
}
} else {
cat("click on filter to retreive annotation")
}
})
output$DGIdb_output = renderPrint({
if(input$DGIdb_anno){
JSON = JSON()
if(length(JSON$matchedTerms)>0){
JSON$matchedTerms[[1]]
} else {
"no interactions found"
}
}
})
output$DGIdb_table = renderDataTable({
if(input$DGIdb_anno){
JSON = JSON()
ngenes_JSON = nrow(JSON$matchedTerms)
if (ngenes_JSON>0){
df_gene = c()
for (i in 1:ngenes_JSON){
df_gene = c(df_gene, rep(JSON$matchedTerms[[1]][[i]],
length(JSON$matchedTerms[[5]][[i]]$drugName)))
}
df_druginfo = matrix(NA,0,0)
for (i in 1:ngenes_JSON){
df_druginfo = rbind(df_druginfo, JSON$matchedTerms[[5]][[i]])
}
data.frame(geneName=as.vector(df_gene), drugName=df_druginfo$drugName,
interactionType=df_druginfo$interactionType,
source = df_druginfo$source)
}
}
})
output$downloadDrugs <- downloadHandler(
filename = function() {
paste('CVE_drug_interactions_', Sys.Date(), '.csv', sep='')
},
content = function(file) {
JSON = JSON()
ngenes_JSON = nrow(JSON$matchedTerms)
if (ngenes_JSON>0){
df_gene = c()
for (i in 1:ngenes_JSON){
df_gene = c(df_gene, rep(JSON$matchedTerms[[1]][[i]],
length(JSON$matchedTerms[[5]][[i]]$drugName)))
}
df_druginfo = matrix(NA,0,0)
for (i in 1:ngenes_JSON){
df_druginfo = rbind(df_druginfo, JSON$matchedTerms[[5]][[i]])
}
drugtable = data.frame(geneName=as.vector(df_gene), drugName=df_druginfo$drugName,
interactionType=df_druginfo$interactionType,
source = df_druginfo$source)
}
writeLines(paste("#Cancer Variant Explorer top table output |", Sys.Date(),"| sample file:",
names(v),"| number of algorithm clusters:",
input$pred_modules,"| algorithm chosen for prioritisation:",
input$algorithm,
"| algorithm cutoff:",
input$comb_score,"| filters: exclude 1000 Genomes:",
1 %in% input$db, ", include all COSMIC:", 2 %in% input$db,
", include non-SNVs:", 3 %in% input$db, ", include DNA repair genes:",
4 %in% input$db, " | rescued genes:", input$rescue),
file)
write.table(drugtable, file,append=TRUE,sep=",")
}
)
####MELANOMA CO-EXPRESSION NETWORKS####
output$topgenes_in_modules <- renderText({
f = VarFilterInput()
if(input$algorithm=="dbNSFP combination score"){
comb_score = CombScoreInput()
} else {
comb_score = rs_matrix[,which(rs_names==input$algorithm)]
comb_score[is.na(comb_score)] = 0
}
topgenes=pcv[[input$sample]]$gene[f]
paste("Number of prioritized variants in top 5000 mad genes:",
sum(topgenes %in% genes_WGCNA), "out of ",length(topgenes %in% genes_WGCNA))
})
output$MS <- renderPlot({
f = VarFilterInput()
topgenes=pcv[[input$sample]]$gene[f]
selection = genes_WGCNA %in% topgenes
topgenes_per_module = as.data.frame(table(modules,selection))$Freq[43:84]
METree_GO$labels[24] = "regulation of transmembrane receptor serine"
METree_GO$labels[27] = "homophilic cell adhesion"
METree_GO$labels[30] = "positive reg. of cytosolic calcium concentration"
par(mfrow=c(1,2))
par(mar=c(8,0,0,0))
a = plot.phylo(as.phylo(METree_GO), font=1, cex=0.90)
plot(0.5,1, xlim=c(0,10),ylim=c(1,42),axes=FALSE, xlab="")
text(x=0, y=c(1:42), labels = c(0:41)[label_order][METree_GO$order], xpd=TRUE)
mtext("module number", las=2, side=1, at=0)
points(rep(0.5,42),c(1:42),xpd=TRUE,pch=15, cex=1.8,
col=c(labels2colors(c(0:41)))[label_order][METree_GO$order])
mtext("module colour", las=2, side=1, at=0.5)
text(x=1, y=c(1:42), labels = topgenes_per_module[label_order][METree_GO$order], xpd=TRUE)
mtext("# variants", las=2, side=1, at=1)
lscore_rectangles = cbind(as.numeric(c(MS_lscore_bar[label_order][METree_GO$order]/5)),rep(0.7,42))
symbols(1.5+as.numeric(c(MS_lscore_bar[label_order][METree_GO$order]/5))/2,c(1:42),
rectangles = lscore_rectangles,add=TRUE, xpd=TRUE,inches = FALSE, adj=1, fg="green3", bg="green3",lwd=2)
mtext("lymphocyte score",las=2,side = 1, at = 1.5)
pmet_rectangles = cbind(as.numeric(c(MS_pmet_bar[label_order][METree_GO$order]/5)),rep(0.7,42))
symbols(3+as.numeric(c(MS_pmet_bar[label_order][METree_GO$order]/5))/2,c(1:42),
rectangles = pmet_rectangles,add=TRUE, xpd=TRUE,inches = FALSE, adj=1, fg="red3", bg="red3",lwd=2)
mtext("primary vs met",las=2,side = 1, at = 3)
UV_rectangles = cbind(as.numeric(c(MS_UV_bar[label_order][METree_GO$order]/5)),rep(0.7,42))
symbols(4.5+as.numeric(c(MS_UV_bar[label_order][METree_GO$order]/5))/2,c(1:42),
rectangles = UV_rectangles,add=TRUE, xpd=TRUE,inches = FALSE, adj=1, fg="magenta", bg="magenta",lwd=2)
mtext("UV signature",las=2,side = 1, at = 4.5)
survival_rectangles = cbind(as.numeric(c(MS_survival_bar[label_order][METree_GO$order]/5)),rep(0.7,42))
symbols(6+as.numeric(c(MS_survival_bar[label_order][METree_GO$order]/5))/2,c(1:42),
rectangles = survival_rectangles,add=TRUE, xpd=TRUE,inches = FALSE, adj=1, fg="orange", bg="orange",lwd=2)
mtext("survival",las=2,side = 1, at = 6)
Vem_rectangles = cbind(as.numeric(c(MS_Vem_bar[label_order][METree_GO$order]/5)),rep(0.7,42))
symbols(7.5+as.numeric(c(MS_Vem_bar[label_order][METree_GO$order]/5))/2,c(1:42),
rectangles = Vem_rectangles,add=TRUE, xpd=TRUE,inches = FALSE, adj=1, fg="blue", bg="blue",lwd=2)
mtext("vemurafinib res",las=2,side = 1, at = 7.5)
rect(9, 5, 10, 5.7, xpd=TRUE, col = "grey", border="grey")
text(labels="0",x=9,y=6.4); text(labels="5",x=10,y=6.4); text(labels = "p-value",x = 9.5,y = 4); text(labels = "(-log10)", x=9.5, y=3)
rect(8.75, 2, 10.25, 8)
})
output$MExploration <- renderPlot({
f = VarFilterInput()
topgenes=pcv[[input$sample]]$gene[f]
module = as.numeric(input$module)
if(input$measure==1){
measure_col = "green3"
GS = GS_lscore
}
if(input$measure==2){
measure_col = "red3"
GS = GS_pmet
}
if(input$measure==3){
measure_col = "magenta"
GS = GS_UV
}
if(input$measure==4){
measure_col = "orange"
GS = GS_survival
}
if(input$measure==5){
measure_col = "blue"
GS = GS_Vem
}
par(mar=c(5,4,1,1))
plot(-log10(GS[modules==module,1]), MM[modules==module,module+1], xlab="p-value (-log10)",
ylab="module membership", pch=20, bty="n",
cex=(GS[modules==module,4]/max(GS[modules==module,4],na.rm=TRUE))*4,
xlim=c(0,max(-log10(GS[modules==module,1]),na.rm=TRUE)+1.2),
ylim=c(0,9.758229e-01), col="darkgrey")
box(lty=1, col=measure_col, lwd=4)
if(sum(genes_WGCNA[modules==module] %in% topgenes)>0){
text(-log10(GS[modules==module,1])[genes_WGCNA[modules==module] %in% topgenes],
MM[modules==module,module+1][genes_WGCNA[modules==module] %in% topgenes],
labels=genes_WGCNA[modules==module][genes_WGCNA[modules==module] %in% topgenes],
cex=1.3, pos=4, col=measure_col)
}
points(-log10(GS[modules==module,1][genes_WGCNA[modules==module] %in% topgenes]),
MM[modules==module,module+1][genes_WGCNA[modules==module] %in% topgenes],
pch=20, bty="n",
cex=((GS[modules==module,4]/max(GS[modules==module,4],na.rm=TRUE))*4)[
genes_WGCNA[modules==module] %in% topgenes],col=measure_col)
if(input$names==1){
text(-log10(GS[modules==module,1]), MM[modules==module,module+1],
labels=genes_WGCNA[modules==module],cex=.8, pos=4)
}
abline(v=-log10(0.05),lty=2,col="darkgrey",lwd=2)
})
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.