Nothing
#' Create Genome Browser track of CTSSs.
#'
#' Create a Gviz-track of CTSSs, where Plus/minus strand signal is shown
#' positive/negative. This representation makes it easy to identify
#' bidirectional peaks.
#'
#' @param object GenomicRanges or RangedSummarizedExperiment: Ranges with CTSSs
#' in the score column.
#' @param plusColor character: Color for plus-strand coverage.
#' @param minusColor character: Color for minus-strand coverage.
#' @param ... additional arguments passed on to DataTrack.
#'
#' @return DataTrack-object.
#' @family Genome Browser functions
#' @export
#' @examples
#' library(Gviz)
#' data(exampleCTSSs)
#' data(exampleUnidirectional)
#' data(exampleBidirectional)
#'
#' # Example uni- and bidirectional clusters
#' TC <- rowRanges(subset(exampleUnidirectional, width>=100)[3,])
#' BC <- rowRanges(exampleBidirectional[3,])
#'
#' # Create pooled trakc
#' subsetOfCTSSs <- subsetByOverlaps(exampleCTSSs, c(BC, TC, ignore.mcols=TRUE))
#' pooledTrack <- trackCTSS(subsetOfCTSSs)
#'
#' # Plot
#' plotTracks(pooledTrack, from=start(TC)-100, to=end(TC)+100,
#' chromosome=seqnames(TC), name='TC')
#' plotTracks(pooledTrack, from=start(BC)-100, to=end(BC)+100,
#' chromosome=seqnames(BC), name='BC')
#'
#' # See vignette for examples on how to combine multiple Gviz tracks
setGeneric("trackCTSS", function(object, ...) {
standardGeneric("trackCTSS")
})
#' @rdname trackCTSS
#' @export
setMethod("trackCTSS", signature(object = "GRanges"), function(object, plusColor = "cornflowerblue",
minusColor = "tomato", ...) {
# Pre-checks
assert_that(isDisjoint(object), !is.null(score(object)), is.numeric(score(object)),
not_empty(seqlengths(object)), noNA(seqlengths(object)), is.string(plusColor),
is.string(minusColor))
# Vector by strand
message("Splitting pooled signal by strand...")
by_strand <- splitByStrand(object)
plus_coverage <- coverage(by_strand$`+`, weight = "score")
minus_coverage <- 0 - coverage(by_strand$`-`, weight = "score")
rm(by_strand)
# Back to GRanges
message("Preparing track...")
names(minus_coverage) <- names(plus_coverage)
o <- bindAsGRanges(plus = plus_coverage, minus = minus_coverage)
# Build track
# o <- Gviz::DataTrack(o, type = "histogram", groups = c("plus", "minus"), col = c(minusColor,
# plusColor), ...)
o <- Gviz::DataTrack(o,
type = "histogram",
groups = factor(c("plus", "minus"),
levels=c("plus", "minus")),
col = c(plusColor, minusColor),
...)
# Return
o
})
#' @rdname trackCTSS
#' @export
setMethod("trackCTSS", signature(object = "RangedSummarizedExperiment"), function(object,
...) {
trackCTSS(rowRanges(object), ...)
})
#' @rdname trackCTSS
setMethod("trackCTSS", signature(object = "GPos"), function(object, ...) {
trackCTSS(methods::as(object, "GRanges"), ...)
})
#' Create genome browser track of clusters.
#'
#' Create a Gviz-track of clusters (unidirectional TCs or bidirectional
#' enhancers), where cluster strand and peak is indicated.
#'
#' @param object GRanges: GRanges with peaks in the thick-column.
#' @param plusColor character: Color for plus-strand features.
#' @param minusColor character: Color for minus-strand features.
#' @param unstrandedColor character: Color for unstranded features.
#' @param ... additional arguments passed on to GeneRegionTrack.
#'
#' @return GeneRegionTrack-object.
#'
#' @family Genome Browser functions
#' @export
#' @examples
#' library(Gviz)
#' data(exampleUnidirectional)
#'
#' # Find some wide unidirectional clusters:
#' TCs <- subset(exampleUnidirectional, width >= 100)
#'
#' # Create track
#' clusters_track <- trackClusters(TCs[1:2,], name='Tag clusters', col=NULL)
#'
#' # Plot
#' plotTracks(clusters_track)
#'
#' # See vignette for examples on how to combine multiple Gviz tracks
setGeneric("trackClusters", function(object, ...) {
standardGeneric("trackClusters")
})
#' @rdname trackClusters
#' @export
setMethod("trackClusters", signature(object = "GRanges"), function(object,
plusColor = "cornflowerblue", minusColor = "tomato", unstrandedColor = "hotpink",
...) {
# Pre-checks
assert_that("thick" %in% colnames(mcols(object)), methods::is(mcols(object)[,
"thick"], "IRanges"), all(poverlaps(mcols(object)$thick, ranges(object),
type = "within")), is.string(plusColor), is.string(minusColor), is.string(unstrandedColor))
# Extract peaks
message("Setting thick and thin features...")
insideThick <- swapRanges(object)
# Remove mcols and add features for thin feature
names(insideThick) <- NULL
mcols(insideThick) <- NULL
insideThick$feature <- ifelse(strand(insideThick) == "+", "thickPlus", "thickMinus")
insideThick$feature <- ifelse(strand(insideThick) == "*", "thickUnstranded",
insideThick$feature)
# Remove peaks from TCs
outsideThick <- setdiff(object, insideThick)
# Remove mcols and add features
mcols(outsideThick) <- NULL
outsideThick$feature <- ifelse(strand(outsideThick) == "+", "thinPlus", "thinMinus")
outsideThick$feature <- ifelse(strand(outsideThick) == "*", "thinUnstranded",
outsideThick$feature)
# Temporary to GRangesList for easy sorting
message("Merging and sorting...")
o <- sort(c(insideThick, outsideThick))
fo <- findOverlaps(o, object, select = "arbitrary")
o <- split(o, fo)
names(o) <- names(object)
o <- unlist(o)
rm(object)
# Add necessary columns for track
o$transcript <- names(o)
o$gene <- o$transcript
o$symbol <- o$transcript
# Build track
message("Preparing track...")
o <- Gviz::GeneRegionTrack(o,
thinBoxFeature = c("thinPlus",
"thinMinus",
"thinUnstranded"),
min.distance = 0,
collapse = FALSE,
thinPlus = plusColor,
thickPlus = plusColor,
thinMinus = minusColor,
thickMinus = minusColor,
thinUnstranded = unstrandedColor,
thickUnstranded = unstrandedColor,
...)
# Return
o
})
#' @rdname trackClusters
#' @export
setMethod("trackClusters", signature(object = "RangedSummarizedExperiment"), function(object,
...) {
trackClusters(rowRanges(object), ...)
})
#' Create Genome Browser Track of bidirectional balance scores
#'
#' Visualize balance scores used for detectiong of bidirectional sites. Mainly
#' intended as diagnostic tools for expert user.
#'
#' @param object GenomicRanges or RangedSummarizedExperiment: Ranges with CTSSs
#' in the score column.
#' @param window integer: Width of sliding window used for calculating windowed
#' sums.
#' @param plusColor character: Color for plus-strand coverage.
#' @param minusColor character: Color for minus-strand coverage.
#' @param balanceColor character: Color for bidirectional balance.
#' @param ... additional arguments passed to DataTrack.
#'
#' @note Potentially consumes a large amount of memory!
#' @return list of 3 DataTracks for upstream, downstream and balance.
#' @family Genome Browser functions
#' @export
#' @examples
#' \dontrun{
#' library(Gviz)
#' data(exampleCTSSs)
#' data(exampleBidirectional)
#'
#' # Calculate pooled CTSSs
#' exampleCTSSs <- calcTPM(exampleCTSSs, totalTags='totalTags')
#' exampleCTSSs <- calcPooled(exampleCTSSs)
#'
#' # Find a bidirectional cluster to plot:
#' BC <- rowRanges(exampleBidirectional[10,])
#' start(BC) <- start(BC) - 250
#' end(BC) <- end(BC) + 250
#' subsetOfCTSSs <- subsetByOverlaps(exampleCTSSs, BC)
#'
#' # Build balance track
#' balance_track <- trackBalance(subsetOfCTSSs)
#'
#' # Plot
#' plotTracks(balance_track, from=start(BC), to=end(BC),
#' chromosome=seqnames(BC))
#' }
setGeneric("trackBalance", function(object, ...) {
standardGeneric("trackBalance")
})
#' @rdname trackBalance
#' @export
setMethod("trackBalance", signature(object = "GRanges"), function(object, window = 199,
plusColor = "cornflowerblue", minusColor = "tomato", balanceColor = "forestgreen",
...) {
# Pre-checks
assert_that(isDisjoint(object),
!is.null(score(object)),
is.numeric(score(object)),
not_empty(seqlengths(object)),
noNA(seqlengths(object)),
is.string(plusColor),
is.string(minusColor),
is.string(balanceColor))
# Get windows
cw <- coverageWindows(pooled = object,
window = window,
balanceFun = balanceBC)
# Assemble tracks
message("Building tracks...")
o <- list(downstream = Gviz::DataTrack(bindAsGRanges(plus = cw$PD,
minus = cw$MD),
name = "Downstream",
type = "l",
groups = factor(c("plus","minus"),
levels=c("plus",
"minus")),
col = c(plusColor, minusColor)),
upstream = Gviz::DataTrack(bindAsGRanges(plus = cw$PU,
minus = cw$MU),
name = "Upstream",
type = "l",
groups = factor(c("plus","minus"),
levels=c("plus",
"minus")),
col = c(plusColor, minusColor)))
if (!is.null(cw$B)) {
o$balance <- Gviz::DataTrack(GRanges(cw$B),
name = "Balance",
type = "l",
col = balanceColor)
}
# Return
o
})
#' @rdname trackBalance
#' @export
setMethod("trackBalance", signature(object = "GPos"), function(object, ...) {
trackBalance(methods::as(object, "GRanges"), ...)
})
#' @rdname trackBalance
#' @export
setMethod("trackBalance", signature(object = "RangedSummarizedExperiment"), function(object,
...) {
trackBalance(rowRanges(object), ...)
})
#' Create a genome browser track of links.
#'
#' Create a Gviz-track of links (e.g. between TSSs and enhancers), where arches connect the different pairs of clusters. The height of arches can be set to scale the strength of the interaction (for example indicating higher correlation). This function is a thin wrapper around the InteractionTrack-class from the GenomicInteractions package. Currently, only scaling arch height by p-value is supported.
#'
#' @param object GInteractions: Links or pairs between clusters.
#' @param ... additional arguments passed to InteractionTrack via displayPars.
#'
#' @return InteractionTrack-object from the GenomicInteractions package.
#' @export
#' @family Genome Browser functions
#' @family Spatial functions
#'
#' @examples
#' library(InteractionSet)
#' library(Gviz)
#' library(GenomicInteractions)
#'
#' # Links between highly expressed unidirectional clusters
#' TCs <- subset(exampleUnidirectional, score > 10)
#' TC_links <- findLinks(TCs, inputAssay="counts", maxDist=10000L)
#' link_track <- trackLinks(TC_links, name="TSS links", interaction.measure="p.value")
#'
#' # Plot region
#' plot_region <- GRanges(seqnames="chr18",
#' ranges = IRanges(start=start(anchors(TC_links[1],
#' "first")),
#' end=end(anchors(TC_links[1],
#' "second"))))
#' # Plot using Gviz
#' plotTracks(link_track,
#' from=start(plot_region),
#' to=end(plot_region),
#' chromosome = as.character(seqnames(plot_region)))
#' # See vignette for examples on how to combine multiple Gviz tracks
trackLinks <- function(object, ...){
# Pre-checks
assert_that(methods::is(object, "GInteractions"))
# Convert to GenomicInteractions
object <- GenomicInteractions::GenomicInteractions(object)
# Gather ...
d <- list(...)
# Build trakc
o <- GenomicInteractions::InteractionTrack(object, name=d$name)
# Pass all dots as display pars
Gviz::displayPars(o) <- d
# Return
o
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.