R/assign.R

Defines functions checkGenomes

#### Helpers ####

checkGenomes <- function(x, y){
    tmp <- checkCompatibleSeqinfo(x,  y)
    methods::is(tmp, "Seqinfo")
}

#### txType ####

#' Annotate ranges with transcript type.
#'
#' Annotate a set of ranges in a GRanges object with transcript type (txType)
#' based on their genic context. Transcripts are obtained from a TxDb object,
#' but can alternatively be specified manually as a GRangesList.
#'
#' @param object GRanges or RangedSummarizedExperiment: Ranges to be annotated.
#' @param txModels TxDb or GRangesList: Transcript models via a TxDb, or
#'   manually specified as a GRangesList.
#' @param outputColumn character: Name of column to hold txType values.
#' @param swap character or NULL: If not NULL, use another set of ranges
#'   contained in object to calculate overlaps, for example peaks in the thick
#'   column.
#' @param tssUpstream integer: Distance to extend annotated promoter upstream.
#' @param tssDownstream integer: Distance to extend annotated promoter
#'   downstream.
#' @param proximalUpstream integer: Maximum distance upstream of promoter to be
#'   considered proximal.
#' @param detailedAntisense logical: Wether to mirror all txType categories in
#'   the antisense direction (TRUE) or lump them all together (FALSE).
#' @param noOverlap character: In case categories are manually supplied with as
#'   a GRangesList, what to call regions with no overlap.
#' @param ... additional arguments passed to methods.
#'
#' @return object with txType added as factor column in rowData (or mcols)
#'
#' @family Annotation functions
#' @export
#' @examples
#' \dontrun{
#' data(exampleUnidirectional)
#'
#' # Obtain transcript models from a TxDb-object:
#' library(TxDb.Mmusculus.UCSC.mm9.knownGene)
#' txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
#'
#' # Assign txIDs
#' assignTxType(exampleUnidirectional,
#'              txModels=txdb)
#'
#' # Assign txIDs using only TC peaks:
#' exampleUnidirectional <- assignTxType(exampleUnidirectional,
#'                                       txModels=txdb,
#'                                       swap='thick')
#'
#' # The 'promoter' and 'proximal' category boundaries can be changed:
#' assignTxType(exampleUnidirectional,
#'              txModels=txdb,
#'              swap='thick',
#'              tssUpstream=50,
#'              tssDownstream=50,
#'              proximalUpstream=100)
#'
#' # Annotation using complete antisense categories:
#' exampleUnidirectional <- assignTxType(exampleUnidirectional,
#'                                     txModels=txdb,
#'                                     outputColumn='txTypeExtended',
#'                                     swap='thick',
#'                                     detailedAntisense=TRUE)
#'
#' # The output is always a factor added as a column:
#' summary(rowRanges(exampleUnidirectional)$txType)
#' summary(rowRanges(exampleUnidirectional)$txTypeExtended)
#'
#' # To avoid using a TxDb-object, a GRangesList can be supplied:
#' custom_hierarchy <- GRangesList(promoters=granges(promoters(txdb)),
#'                                 exons=granges(exons(txdb)))
#' assignTxType(exampleUnidirectional,
#'              txModels=custom_hierarchy,
#'              outputColumn='customType',
#'              swap='thick',
#'              noOverlap = 'intergenic')
#' }
setGeneric("assignTxType", function(object, txModels, ...) {
    standardGeneric("assignTxType")
})

#' @rdname assignTxType
setMethod("assignTxType", signature(object = "GenomicRanges", txModels = "GenomicRangesList"),
    function(object, txModels, outputColumn = "txType", swap = NULL, noOverlap = "intergenic") {
        # Pre-checks
        assert_that(!is.null(names(txModels)),
                    is.string(outputColumn),
                    is.string(noOverlap),
                    checkGenomes(object, txModels))
                    #identical(seqlengths(object), seqlengths(txModels)))

        # Warnings
        if (outputColumn %in% colnames(mcols(object))) {
            warning("object already has a column named ",
                    outputColumn,
                    " in mcols: It will be overwritten!")
        }

        # Find overlaps
        if (is.null(swap)) {
            message("Finding hierachical overlaps...")
            hits <- findOverlaps(object, txModels)
        } else {
            message("Finding hierachical overlaps with swapped ranges...")
            hits <- findOverlaps(swapRanges(object, inputColumn = swap), txModels)
        }

        # Choose highest in hierachy
        hits <- breakTies(hits, method = "first")

        # Extract corresponding categories
        hits <- methods::as(hits, "List")
        hits <- extractList(names(txModels), hits)
        hits <- as.character(hits)

        # Replace NAs and format as factor
        hits <- ifelse(is.na(hits), noOverlap, hits)
        hits <- factor(hits, levels = c(names(txModels), noOverlap))

        # Append to object
        mcols(object)[, outputColumn] <- hits

        # Summarise annotation
        s <- as.data.frame(table(hits))
        colnames(s) <- c("txType", "count")
        s$percentage <- round((s$count / sum(s$count)) * 100, digits = 1)
        s <- paste(utils::capture.output(print(s)), collapse = "\n")
        message("### Overlap summary: ###")
        message(s)

        # Return
        object
    })

#' @rdname assignTxType
setMethod("assignTxType",
          signature(object = "RangedSummarizedExperiment",
                    txModels = "GenomicRangesList"),
    function(object, txModels, ...) {
        rowRanges(object) <- assignTxType(rowRanges(object),
                                          txModels = txModels,
            ...)

        # Return
        object
    })

#' @rdname assignTxType
setMethod("assignTxType", signature(object = "GenomicRanges", txModels = "TxDb"),
    function(object, txModels, outputColumn = "txType", swap = NULL,
             tssUpstream = 100, tssDownstream = 100, proximalUpstream = 1000,
             detailedAntisense = FALSE) {
        # Pre-checks
        assert_that(is.count(tssUpstream),
                    is.count(tssDownstream),
                    is.count(proximalUpstream),
                    is.flag(detailedAntisense),
                    checkGenomes(object, txModels))

        # Hierachy
        hierachy <- utilsSimplifyTxDb(object=txModels,
                                      tssUpstream=tssUpstream,
                                      tssDownstream=tssDownstream,
                                      proximalUpstream=proximalUpstream,
                                      detailedAntisense=detailedAntisense)

        # Build sense hierachy
        # hierachy <- GRangesList(promoter = granges(trim(promoters(txModels, upstream = tssUpstream,
        #     downstream = tssDownstream))), proximal = granges(trim(promoters(txModels,
        #     upstream = proximalUpstream, downstream = 0))), fiveUTR = granges(unlist(fiveUTRsByTranscript(txModels))),
        #     threeUTR = granges(unlist(threeUTRsByTranscript(txModels))), CDS = granges(cds(txModels)),
        #     exon = granges(exons(txModels)), intron = granges(unlist(intronsByTranscript(txModels))))
        #
        # Build sense hierachy message('Extracting txType categories...') hierachy <-
        # List(promoter=trim(promoters(txModels, upstream=tssUpstream,
        # downstream=tssDownstream)), proximal=trim(promoters(txModels,
        # upstream=proximalUpstream, downstream=0)),
        # fiveUTR=fiveUTRsByTranscript(txModels),
        # threeUTR=threeUTRsByTranscript(txModels), CDS=cds(txModels),
        # exon=exons(txModels), intron=intronsByTranscript(txModels)) # Coerce to
        # GRangesList #message('Coercing to GRangesList...') hierachy <- lapply(hierachy,
        # unlist) hierachy <- lapply(hierachy, granges) hierachy <- GRangesList(hierachy)

        # Build antisense hierachy message('Adding antisense categories...')
        # if (detailedAntisense) {
        #     antisense <- invertStrand(hierachy)
        #     names(antisense) <- paste0("antisense_", names(antisense))
        #     hierachy <- c(hierachy, antisense)
        # } else if (!detailedAntisense) {
        #     antisense <- invertStrand(granges(transcripts(txModels)))
        #     hierachy$antisense <- antisense
        # } else {
        #     stop("detailedAntisense must be either TRUE/FALSE!")
        # }
        # rm(antisense)

        # Overlap
        object <- assignTxType(object = object,
                               txModels = hierachy,
                               outputColumn = outputColumn,
                               swap = swap,
                               noOverlap = "intergenic")

        # Return
        object
    })

#' @rdname assignTxType
setMethod("assignTxType", signature(object = "RangedSummarizedExperiment", txModels = "TxDb"),
    function(object, txModels, ...) {
        rowRanges(object) <- assignTxType(rowRanges(object), txModels = txModels,
            ...)

        # Return
        object
    })

#### geneID ####

#' Annotate ranges with gene ID.
#'
#' Annotate a set of ranges in a GRanges object with gene IDs (i.e. Entrez Gene
#' Identifiers) based on their genic context. Features overlapping multiple
#' genes are resolved by distance to the nearest TSS. Genes are obtained from a
#' TxDb object, or can manually supplied as a GRanges.
#'
#' @param object GRanges or RangedSummarizedExperiment: Ranges to be annotated.
#' @param geneModels TxDb or GRanges: Gene models via a TxDb, or manually
#'   specified as a GRangesList.
#' @param outputColumn character: Name of column to hold geneID values.
#' @param swap character or NULL: If not NULL, use another set of ranges
#'   contained in object to calculate overlaps, for example peaks in the thick
#'   column.
#' @param upstream integer: Distance to extend annotated promoter upstream.
#' @param downstream integer: Distance to extend annotated promoter downstream.
#' @param ... additional arguments passed to methods.
#'
#' @return object with geneID added as a column in rowData (or mcols).
#'
#' @family Annotation functions
#' @export
#' @examples
#' data(exampleUnidirectional)
#'
#' # Obtain gene models from a TxDb-object:
#' library(TxDb.Mmusculus.UCSC.mm9.knownGene)
#' txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
#'
#' # Assign geneIDs
#' assignGeneID(exampleUnidirectional,
#'              geneModels=txdb,
#'              outputColumn='geneID')
#'
#' # Assign geneIDs using only TC peaks:
#' assignGeneID(exampleUnidirectional,
#'              geneModels=txdb,
#'              outputColumn='geneID',
#'              swap='thick')
setGeneric("assignGeneID", function(object, geneModels, ...) {
    standardGeneric("assignGeneID")
})

#' @rdname assignGeneID
setMethod("assignGeneID", signature(object = "GenomicRanges", geneModels = "GenomicRanges"),
    function(object, geneModels, outputColumn = "geneID", swap = NULL, upstream = 1000,
        downstream = 100) {
        # Pre-checks
        assert_that(!is.null(names(geneModels)),
                    is.string(outputColumn),
                    is.number(upstream),
                    is.number(downstream),
                    checkGenomes(object, geneModels))
                    #identical(seqlengths(object), seqlengths(geneModels)))

        # Warnings
        if (outputColumn %in% colnames(mcols(object))) {
            warning("object already has a column named ",
                    outputColumn,
                    " in mcols: It will be overwritten!")
        }

        # Extract anchor points
        message("Overlapping while taking distance to nearest TSS into account...")
        extendedGeneModels <- punion(geneModels,
                                     promoters(geneModels,
                                               upstream = upstream,
                                               downstream = downstream))
        extendedGeneModels <- trim(extendedGeneModels)
        TSSs <- resize(geneModels, width = 1, fix = "start")

        # Find overlaps
        if (is.null(swap)) {
            message("Finding hierachical overlaps...")
            hits <- findOverlaps(object, extendedGeneModels)
        } else {
            message("Finding hierachical overlaps with swapped ranges...")
            hits <- findOverlaps(swapRanges(object, inputColumn = swap),
                                 extendedGeneModels)
        }

        # Calculate distances to TSSs
        mcols(hits)$distance <- distance(Pairs(object, TSSs, hits = hits))
        rm(TSSs, extendedGeneModels)

        # Resolve by distance to nearest TSS by split apply, THIS CAN BE UPDATED IN NEXT
        # VERSION OF S4Vectors!
        hits <- hits[which.min(splitAsList(mcols(hits)$distance, queryHits(hits)),
            global = TRUE)]

        # Extract ids
        hits <- methods::as(hits, "List")
        hits <- extractList(names(geneModels), hits)
        hits <- as.character(hits)
        stopifnot(length(hits) == length(object))

        # Append to object
        mcols(object)[, outputColumn] <- hits

        # Return
        message("### Overlap Summary: ###")
        message("Features overlapping genes: ",
                round(mean(!is.na(hits)) * 100, digits = 2),
                " %")
        message("Number of unique genes: ", length(unique(na.omit(hits))))

        # Return
        object
    })

#' @rdname assignGeneID
setMethod("assignGeneID", signature(object = "RangedSummarizedExperiment", geneModels = "GenomicRanges"),
    function(object, geneModels, ...) {
        rowRanges(object) <- assignGeneID(rowRanges(object),
                                          geneModels = geneModels,
                                          ...)

        # Return
        object
    })

#' @rdname assignGeneID
setMethod("assignGeneID", signature(object = "GenomicRanges", geneModels = "TxDb"),
    function(object, geneModels, outputColumn = "geneID", swap = NULL, upstream = 1000,
        downstream = 100) {
        # Pre-checks
        assert_that(is.string(outputColumn),
                    is.number(upstream),
                    is.number(downstream),
                    checkGenomes(object, geneModels))
            #identical(seqlengths(object), seqlengths(geneModels)))

        # Extract anchor points
        message("Extracting genes...")
        as_gr <- genes(geneModels)

        # Overlap
        object <- assignGeneID(object,
                               geneModels = as_gr,
                               outputColumn = outputColumn,
                               swap = swap,
                               upstream = upstream,
                               downstream = downstream)

        # Return
        object
    })

#' @rdname assignGeneID
setMethod("assignGeneID", signature(object = "RangedSummarizedExperiment", geneModels = "TxDb"),
    function(object, geneModels, ...) {
        rowRanges(object) <- assignGeneID(rowRanges(object),
                                          geneModels = geneModels,
                                          ...)

        # Return
        object
    })

#### txID ####

#' Annotate ranges with transcript ID.
#'
#' Annotate a set of ranges in a GRanges object with transcript IDs based on
#' their genic context. All overlapping transcripts are returned. Transcripts
#' are obtained from a TxDb object, or can manually supplied as a GRanges.
#'
#' @param object GRanges or RangedSummarizedExperiment: Ranges to be annotated.
#' @param txModels TxDb or GRanges: Transcript models via a TxDb, or manually
#'   specified as a GRanges.
#' @param outputColumn character: Name of column to hold txID values.
#' @param swap character or NULL: If not NULL, use another set of ranges
#'   contained in object to calculate overlaps, for example peaks in the thick
#'   column.
#' @param upstream integer: Distance to extend annotated promoter upstream.
#' @param downstream integer: Distance to extend annotated promoter downstream.
#' @param ... additional arguments passed to methods.
#'
#' @return object with txID added as a column in rowData (or mcols)
#'
#' @family Annotation functions
#' @export
#' @examples
#' data(exampleUnidirectional)
#'
#' # Obtain transcript models from a TxDb-object:
#' library(TxDb.Mmusculus.UCSC.mm9.knownGene)
#' txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
#'
#' # Assign txIDs
#' assignTxID(exampleUnidirectional,
#'            txModels=txdb,
#'            outputColumn='geneID')
#'
#' # Assign txIDs using only TC peaks:
#' assignTxID(exampleUnidirectional,
#'              txModels=txdb,
#'              outputColumn='geneID',
#'              swap='thick')
setGeneric("assignTxID", function(object, txModels, ...) {
    standardGeneric("assignTxID")
})

#' @rdname assignTxID
setMethod("assignTxID", signature(object = "GenomicRanges", txModels = "GenomicRanges"),
    function(object, txModels, outputColumn = "txID", swap = NULL) {
        # Pre-checks
        assert_that(!is.null(names(txModels)),
                    is.string(outputColumn),
                    checkGenomes(object, txModels))
                    #identical(seqlengths(object), seqlengths(txModels)))

        # Warnings
        if (outputColumn %in% colnames(mcols(object))) {
            warning("object already has a column named ",
                    outputColumn,
                    " in mcols: It will be overwritten!")
        }

        # Find overlaps
        if (is.null(swap)) {
            message("Finding hierachical overlaps...")
            hits <- findOverlaps(object, txModels)
        } else {
            message("Finding hierachical overlaps with swapped ranges...")
            hits <- findOverlaps(swapRanges(object, inputColumn = swap),
                                 txModels)
        }

        # Count unique transcrips for later
        nTxs <- length(unique(to(hits)))

        # Extract names
        hits <- methods::as(hits, "List")
        hits <- extractList(names(txModels), hits)
        hits <- paste(hits, collapse = ";")
        hits <- ifelse(hits == "", NA, hits)

        # Checks
        stopifnot(length(hits) == length(object), is.character(hits))

        # Append to object
        mcols(object)[, outputColumn] <- hits

        # Return
        message("### Overlap Summary: ###")
        message("Features overlapping transcripts: ",
                round(mean(!is.na(hits)) * 100, digits = 2),
                " %")
        message("Number of unique transcripts: ", nTxs)

        # Return
        object
    })

#' @rdname assignTxID
setMethod("assignTxID", signature(object = "RangedSummarizedExperiment", txModels = "GenomicRanges"),
    function(object, txModels, ...) {
        rowRanges(object) <- assignTxID(rowRanges(object),
                                        txModels = txModels,
                                        ...)

        # Return
        object
    })

#' @rdname assignTxID
setMethod("assignTxID", signature(object = "GenomicRanges", txModels = "TxDb"),
          function(object, txModels, outputColumn = "txID", swap = NULL, upstream = 1000, downstream = 0) {
    # Pre-checks
    assert_that(is.string(outputColumn),
                is.number(upstream),
                upstream >= 0,
                is.number(downstream),
                downstream >= 0,
                checkGenomes(object, txModels))
                #identical(seqlengths(object), seqlengths(txModels)))

    # Extract anchor points
    message("Extracting transcripts...")
    txs <- transcripts(txModels, columns = "tx_name")
    names(txs) <- txs$tx_name
    txs <- punion(txs, promoters(txs, upstream = upstream, downstream = downstream))
    txs <- trim(txs)

    # Overlap
    object <- assignTxID(object, txModels = txs, outputColumn = outputColumn)

    # Return
    object
})

#' @rdname assignTxID
setMethod("assignTxID", signature(object = "RangedSummarizedExperiment", txModels = "TxDb"),
    function(object, txModels, ...) {
        rowRanges(object) <- assignTxID(rowRanges(object), txModels = txModels, ...)

        # Return
        object
    })

#### NAs ####

#' Annotate ranges with missing IDs.
#'
#' This function can relabel ranges with missing IDs (i.e. returned by
#' assignTxID and assignGeneID), in case they need to be retained for further
#' analysis.
#'
#' @param object character, GRanges or RangedSummarizedExperiment: IDs to have
#'   NAs replaces with new IDs.
#' @param outputColumn character: Name of column to hold txID values.
#' @param prefix character: New name to assign to ranges with missing IDs, in
#'   the style prefix1, prefix2, etc.
#' @param ... additional arguments passed to methods.
#'
#' @return object with NAs replaced in outputColumn
#'
#' @family Annotation functions
#' @export
#' @examples
#' data(exampleUnidirectional)
#'
#' # Obtain gene models from a TxDb-object:
#' library(TxDb.Mmusculus.UCSC.mm9.knownGene)
#' txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene
#'
#' # Assign geneIDs using only TC peaks:
#' exampleUnidirectional <- assignGeneID(exampleUnidirectional,
#'                                       geneModels=txdb,
#'                                       outputColumn='geneID',
#'                                       swap='thick')
#'
#' # Replace NAs with 'Novel'
#' assignMissingID(exampleUnidirectional)
#'
#' # Replace NAs with 'NovelTSS'
#' assignMissingID(exampleUnidirectional, prefix = 'NovelTSS')
setGeneric("assignMissingID", function(object, ...) {
    standardGeneric("assignMissingID")
})

#' @rdname assignMissingID
setMethod("assignMissingID", signature(object = "character"), function(object, prefix = "Novel") {
    # Pre-checks
    assert_that(is.string(prefix))

    missingIDs <- is.na(object)
    totalMissing <- sum(missingIDs)
    object[missingIDs] <- paste0(prefix, seq_len(totalMissing))

    message("Assigned ", totalMissing, " missing IDs")
    object
})

#' @rdname assignMissingID
setMethod("assignMissingID", signature(object = "GenomicRanges"), function(object,
    outputColumn = "geneID", prefix = "Novel") {
    # Pre-checks
    assert_that(is.string(outputColumn),
                outputColumn %in% colnames(mcols(object)))

    # Replace
    mcols(object)[, outputColumn] <- assignMissingID(mcols(object)[, outputColumn],
        prefix = prefix)

    # Return
    object
})

#' @rdname assignMissingID
setMethod("assignMissingID", signature(object = "RangedSummarizedExperiment"), function(object,
    outputColumn = "geneID", prefix = "Novel") {
    rowRanges(object) <- assignMissingID(rowRanges(object), outputColumn = outputColumn,
        prefix = prefix)

    # Return
    object
})

Try the CAGEfightR package in your browser

Any scripts or data that you put into this service are public.

CAGEfightR documentation built on Nov. 8, 2020, 5:42 p.m.